【題目】分別是橢圓的左、右焦點.若是該橢圓上的一個動點,的最大值為1.

(1)求橢圓的方程;

(2)設直線與橢圓交于兩點,關于軸的對稱點為(不重合),則直線軸是否交于一個定點若是,請寫出定點坐標,并證明你的結論若不是,請說明理由.

【答案】(1) ;(2)見解析.

【解析】分析:(1)由題意可得,,設,根據(jù)的最大值可得,從而得到橢圓的方程.(2)將直線方程代入橢圓方程消去x后得到關于的二次方程,設,,則,則可得經(jīng)過點的直線方和為,令,結合根與系數(shù)的關系可得,從而可得直線軸交于定點

詳解:(1)由題意得,,

,

,則

,

,

∴當,即點為橢圓長軸端點時,有最大值1,

,解得,

故所求的橢圓方程為

(2)由得消去x整理得,

顯然

,,則,

,.

∴經(jīng)過點的直線方和為

,則,

,

,

即當

∴直線軸交于定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在某次人才招聘會上,假定某畢業(yè)生贏得甲公司面試機會的概率為,贏得乙、丙兩公司面試機會的概率均為,且三家公司是否讓其面試是相互獨立的,則該畢業(yè)生只贏得甲、乙兩家公司面試機會的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域為D,若函數(shù)滿足條件:存在,使上的值域為,則稱為“倍縮函數(shù)”,若函數(shù)為“倍縮函數(shù)”,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙、丙、丁、戊、己6.(以下問題用數(shù)字作答)

1)邀請這6人去參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的安排方法?

2)將這6人作為輔導員全部安排到3項不同的活動中,求每項活動至少安排1名輔導員的方法總數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三個頂點,其外接圓為.對于線段上的任意一點,

若在以為圓心的圓上都存在不同的兩點,使得點是線段的中點,則的半徑的取值范圍__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)其中.

(1)若函數(shù)處取得極值,求實數(shù)的值;

(2)(1)的結論下,若關于的不等式,時恒成立的值;

(3)令,若關于的方程內至少有兩個解,求出實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當時,.

1)求的值;

2)求函數(shù)上的解析式;

3)若關于的方程有四個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠家擬在2020年舉行促銷活動,經(jīng)調查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元,滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費用(萬元)的函數(shù);

2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的零點個數(shù);

(2)已知,證明:當時,.

查看答案和解析>>

同步練習冊答案