根據如圖所示的程序框圖,變量a每次賦值后的結果依次記作:a1、a2、a3…an….如a1=1,a2=3….
(Ⅰ)寫a3、a4、a5
(Ⅱ)猜想出數(shù)列{an}的一個通項公式;
(Ⅲ)寫出運行該程序結束輸出的a值.(寫出過程)
考點:數(shù)列的概念及簡單表示法,循環(huán)結構
專題:計算題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)根據程序框圖,即可寫a3、a4、a5;
(Ⅱ)由(Ⅰ)猜想出數(shù)列{an}的一個通項公式;
(Ⅲ)根據程序框圖,寫出運行該程序結束輸出的a值.
解答: 解:(Ⅰ)a1=1,a2=3,a3=7,a4=15,a5=31----(3分)
(Ⅱ)猜想:an=2n-1----------------------------(5分)
(Ⅲ)當n=11時,a>2014,輸出a=2047.-----------------(8分)
點評:本題考查算法知識,考查數(shù)列{an}的一個通項公式,正確理解程序框圖是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線x-y+
2
=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設P為橢圓上一點,且滿足
OA
+
OB
=t
OP
(其中O為坐標原點),求整數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
OA
=(λcosα,λsinα)(λ≠0),
OB
=(-sinβ,cosβ),其中O為坐標原點.
(1)若∠B=α-30°,求
OA
OB
的夾角;
(2)若|
AB
|≥|
OB
|,對于任意實數(shù)α、β都成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,底面ABCD是邊長為2的菱形,且∠BAD=
π
3
,分別以△ABD與△CBD為底面作相同的正三棱錐E-ABD與F-CBD,且∠AEB=
π
2

(1)求證:EF∥平面ABCD;
(2)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知動點P(x,y)(y≤0)到點F(0,2)的距離為d1,到x軸的距離為d2,且d1-d2=2.
(Ⅰ)求點P的軌跡E的方程;
(Ⅱ)若直線l斜率為1且過點(1,0),其與軌跡E交于點M、N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是橢圓E:
x2
a2
+y2=1(a>1)的左、右焦點,A,B分別為橢圓的上、下頂點,若F2到直線AF1的距離為
2

(1)求橢圓E的方程;
(2)過橢圓的右頂點C的直線l與橢圓交于點D(點D不同于點C),交y軸于點P(點P不同于坐標原點O),直線AD與BC交于點Q,試判斷
OP
OQ
是否為定值,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}、{bn}滿足a1=2,an-1=an(an+1-1),bn=an-1,數(shù)列{bn}的前n項和為Sn,n∈N*
(1)證明數(shù)列{
1
bn
}
為等差數(shù)列,并求數(shù)列{bn}的通項公式;
(2)用數(shù)學歸納法證明:對任意的n∈N*,有1+
n
2
S2n
1
2
+n成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線L1,L2都過點(1,-2)且互相垂直,若拋物線y=ax2與兩直線中至少一條相交,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某食品廠為了檢查甲、乙兩條自動包裝流水線的生產情況,隨機在這兩條流水線上各抽取40件產品作為樣本.經統(tǒng)計,得到下列關于產品重量的樣本頻數(shù)分布表:
甲流水線
產品重量(單位:克)
頻數(shù)
(490,495] 2
(495,500] 12
(500,505] 18
(505,510] 6
(510,515] 2
乙流水線
產品重量(單位:克)
頻數(shù)
(490,495] 6
(495,500] 8
(500,505] 14
(505,510] 8
(510,515] 4
已知產品的重量合格標準為:重量值(單位:克)落在(495,510]內的產品為合格品;否則為不合格品.
(Ⅰ)從甲流水線樣本的合格品中任意取2件,求重量值落在(505,510]的產品件數(shù)X的分布列;
(Ⅱ)從乙流水線中任取2件產品,試根據樣本估計總體的思想,求其中合格品的件數(shù)Y的數(shù)學期望;
(Ⅲ)從甲、乙流水線中各取2件產品,用ξ表示“甲流水線合格品數(shù)與乙流水線合格品數(shù)的差的絕對值”,并用A表示事件“關于x的一元二次方程2x2+2ξx+ξ=0沒有實數(shù)解”. 試根據樣本估計總體的思想,求事件A的概率.

查看答案和解析>>

同步練習冊答案