cos2α
cos(
π
4
+α)
=
1
2
,則cosα+sinα=( 。
A、
1
2
B、
2
2
C、
1
4
D、
2
4
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:已知等式左邊分子利用二倍角的余弦函數(shù)公式化簡,分母利用兩角和與差的余弦函數(shù)公式化簡,約分即可求出所求式子的值.
解答: 解:∵
cos2α
cos(
π
4
+α)
=
cos2α-sin2α
2
2
(cosα-sinα)
=
2
(cosα+sinα)=
1
2
,
∴cosα+sinα=
2
4

故選:D.
點(diǎn)評:此題考查了運(yùn)用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在集合{1,2,3,4,5}中任取一個偶數(shù)a和一個奇數(shù)b構(gòu)成以原點(diǎn)為起點(diǎn)的向量
a
=(a,b),從所有得到的以原點(diǎn)為起點(diǎn)的向量中任取兩個向量為鄰邊作平行四邊形,記所有作成的平行四邊形的個數(shù)為t,在區(qū)間(1,
t
3
)和(2,4)內(nèi)分別各取一個數(shù),記為m和n,則方程
x2
m2
+
y2
n2
=1表示焦點(diǎn)在x軸上的橢圓的概率P為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinα+2icosα=2i,則α的取值范圍為(  )
A、{α|α=kπ,k∈Z}
B、{α|α=
2
,k∈Z}
C、{α|α=2kπ,k∈Z}
D、{α|α=2kπ+
π
2
,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合S={x||x-1|≤2,x∈R},T={x|
5
x+1
≥0,x∈Z},則S∩T=( 。
A、{x|0<x<3,x∈Z}
B、{x|0≤x≤3,x∈Z}
C、{x|-1≤x≤3,x∈Z}
D、{x|-1<x<3,x∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a1=-2013,
S2010
2010
-
S2004
2004
=6,則S2014=(  )
A、2013B、2014
C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tan(2π+α)=
3
4
,則tan(α+
π
4
)=( 。
A、
1
7
B、7
C、-
1
7
D、-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,若∠A=∠C=60°,AD=BC=2,且AB≠CD,則四邊形ABCD的面積為( 。
A、
3
2
B、
3
C、
6
2
D、與點(diǎn)B的位置有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某旅游景點(diǎn)有一座風(fēng)景秀麗的山峰,游客可以乘長為3km的索道AC上山,也可以沿山路BC上山,山路BC中間有一個距離山腳B為1km的休息點(diǎn)D.已知∠ABC=120°,∠ADC=150°.假設(shè)小王和小李徒步攀登的速度為每小時1.2km,請問:兩位登山愛好者能否在2個小時內(nèi)徒步登上山峰(即從B點(diǎn)出發(fā)到達(dá)C點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x),當(dāng)x∈(-∞,0]時,恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-1)的解集為?

查看答案和解析>>

同步練習(xí)冊答案