【題目】如圖1,在中,,分別為,的中點,的中點, ,.將沿折起到的位置,使得平面平面, 的中點,如圖2.

Ⅰ)求證: 平面;

Ⅱ)求F到平面A1OB的距離.

    1 2

【答案】見解析;

【解析】分析:Ⅰ)折疊前有,折疊后的中點為,則,從而,四邊形為平行四邊形,從而,可證平面

由平面平面可以得到到平面的距離,從而可得,也就得到了,故可求得到平面的距離

詳解:(Ⅰ)取線段的中點,連接,

因為在中, 分別為的中點,所以,

因為,分別為的中點,所以,,

所以,四邊形為平行四邊形,故

因為平面,平面,所以平面

因為的中點,,所以

又因為平面平面平面平面,故

平面.由圖有,,則

,故

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖像如圖所示,考查下列說法:

的圖像關(guān)于直線對稱

的圖像關(guān)于點對稱

③若關(guān)于x的方程在上有兩個不相等的實數(shù)根,則實數(shù)的取值范圍為

④將函數(shù)的圖像向右平移個單位可得到函數(shù)的圖像

其中正確個數(shù)的是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求a的取值范圍;

(2), ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若中心在原點的橢圓與雙曲線有共同的焦點,且它們的離心率互為倒數(shù),圓的直徑是橢圓的長軸,C是橢圓的上頂點,動直線AB過C點且與圓交于A、B兩點,CD垂直于AB交橢圓于點D.

(1)求橢圓的方程;

(2)求面積的最大值,并求此時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,,令.

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間及極值;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線和曲線,以極點為坐標(biāo)原點,極軸為軸非負半軸建立平面直角坐標(biāo)系.

(1)求曲線和曲線的直角坐標(biāo)方程;

(2)若點是曲線上一動點,過點作線段的垂線交曲線于點,求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對定義在[0,1]上,并且同時滿足以下兩個條件的函數(shù)fx)稱為G函數(shù).

對任意的x∈[0,1],總有fx≥0

當(dāng)x1≥0,x2≥0,x1+x2≤1時,總有fx1+x2≥fx1+fx2)成立.已知函數(shù)gx=x2hx=2xb是定義在[0,1]上的函數(shù).

1)試問函數(shù)gx)是否為G函數(shù)?并說明理由;

2)若函數(shù)hx)是G函數(shù),求實數(shù)b組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若的圖像與直線相切,求

Ⅱ)若且函數(shù)的零點為,

設(shè)函數(shù)試討論函數(shù)的零點個數(shù).(為自然常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機對學(xué)習(xí)成績的影響,部分統(tǒng)計數(shù)據(jù)如下表:

使用智能手機

不使用智能手機

總計

學(xué)習(xí)成績優(yōu)秀

4

8

12

學(xué)習(xí)成績不優(yōu)秀

16

2

18

總計

20

10

30

(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過0.005的前提下認為使用智能手機對學(xué)習(xí)成績有影響?

(Ⅱ)從學(xué)習(xí)成績優(yōu)秀的12名同學(xué)中,隨機抽取2名同學(xué),求抽到不使用智能手機的人數(shù)的分布列及數(shù)學(xué)期望.

參考公式:,其中

參考數(shù)據(jù):

0.05

0,。025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案