【題目】已知函數(shù),,,令.

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間及極值;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

【答案】(1)答案見解析;(2)2.

【解析】

(1)由題意可得.利用導(dǎo)函數(shù)研究函數(shù)的性質(zhì)可得的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.,無極小值.

(2)法一:令,則.由導(dǎo)函數(shù)研究函數(shù)的最值可得的最大值為.據(jù)此計(jì)算可得整數(shù)的最小值為2.

法二:原問題等價(jià)于恒成立,令,則,由導(dǎo)函數(shù)研究函數(shù)的性質(zhì)可得整數(shù)的最小值為2.

(1),

所以.

;

,所以的單調(diào)遞增區(qū)間為.

,所以的單調(diào)遞減區(qū)間為.

所以函數(shù),無極小值.

(2)法一:令 .

所以

.

當(dāng)時(shí),因?yàn)?/span>,所以所以上是遞增函數(shù),

又因?yàn)?/span>.

所以關(guān)于的不等式不能恒成立.

當(dāng)時(shí), .,

所以當(dāng)時(shí),;

當(dāng)時(shí),,

因此函數(shù)是增函數(shù),在是減函數(shù).

故函數(shù)的最大值為.

,因?yàn)?/span>,

又因?yàn)?/span>上是減函數(shù),所以當(dāng)時(shí),.

所以整數(shù)的最小值為2.

法二:由恒成立知恒成立,

,則,

,因?yàn)?/span>,

,則為增函數(shù).

故存在,使,即,

當(dāng)時(shí),為增函數(shù),

當(dāng)時(shí),,為減函數(shù).

所以

,所以,

所以整數(shù)的最小值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線

(1)求證:直線過定點(diǎn);

(2)求直線被圓所截得的弦長(zhǎng)最短時(shí)的值;

(3)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對(duì)于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)作出函數(shù)的圖象;

2)求函數(shù)的單調(diào)區(qū)間,并指出其單調(diào)性;

3)求)的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別表示的三個(gè)內(nèi)角所對(duì)邊的邊長(zhǎng),表示的外接圓半徑.

1,求的長(zhǎng);

2)在中,若是鈍角,求證:;

3)給定三個(gè)正實(shí)數(shù),其中,問滿足怎樣的關(guān)系時(shí),以為邊長(zhǎng),為外接圓半徑的不存在,存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在存在的情況下,用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①函數(shù)的圖象和直線的公共點(diǎn)個(gè)數(shù)是,則的值可能是;

②若函數(shù)定義域?yàn)?/span>且滿足,則它的圖象關(guān)于軸對(duì)稱;

③函數(shù)的值域?yàn)?/span>;

④若函數(shù)上有零點(diǎn),則實(shí)數(shù)的取值范圍是.

其中正確的序號(hào)是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,分別為的中點(diǎn),的中點(diǎn), ,.將沿折起到的位置,使得平面平面, 的中點(diǎn),如圖2.

Ⅰ)求證: 平面;

Ⅱ)求F到平面A1OB的距離.

    1 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).

k值;

,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過點(diǎn),焦點(diǎn),圓O的直徑為

(1)求橢圓C及圓O的方程;

(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P

①若直線l與橢圓C有且只有一個(gè)公共點(diǎn),求點(diǎn)P的坐標(biāo);

②直線l與橢圓C交于兩點(diǎn).若的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級(jí)的一次月考成績(jī)中隨機(jī)抽取了名學(xué)生的成績(jī)(滿分分),這名學(xué)生的成績(jī)都在內(nèi),按成績(jī)分為,,五組,得到如圖所示的頻率分布直方圖.

1)求圖中的值;

2)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,估計(jì)該校高一年級(jí)本次考試成績(jī)的平均分;

3)用分層抽樣的方法從成績(jī)?cè)?/span>內(nèi)的學(xué)生中抽取人,再?gòu)倪@人中隨機(jī)抽取名學(xué)生進(jìn)行調(diào)查,求月考成績(jī)?cè)?/span>內(nèi)至少有名學(xué)生被抽到的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案