在△ABC中,sin2A≤sin2B+sin2C-sin B•sin C,則A的取值范圍是
 
考點:余弦定理
專題:計算題,解三角形
分析:利用正弦定理化簡已知的不等式,再利用余弦定理表示出cosA,將得出的不等式變形后代入表示出的cosA中,得出cosA的范圍,由A為三角形的內(nèi)角,根據(jù)余弦函數(shù)的圖象與性質(zhì)即可求出A的取值范圍.
解答: 解:利用正弦定理化簡sin2A≤sin2B+sin2C-sinBsinC得:a2≤b2+c2-bc,
變形得:b2+c2-a2≥bc,
∴cosA=
b2+c2-a2
2bc
bc
2bc
=
1
2
,
又A為三角形的內(nèi)角,
則A的取值范圍是(0,
π
3
].
故答案為:(0,
π
3
].
點評:此題考查了正弦、余弦定理,特殊角的三角函數(shù)值,以及余弦函數(shù)的圖象與性質(zhì),熟練掌握正弦、余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n∈R,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則mn的取值范圍是( 。
A、[3-2
2
,3+2
2
]
B、(-∞,3-2
2
]∪[3+2
2
,+∞)
C、[1-
2
,1+
2
]
D、(-∞,1-
2
]∪[1+
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC的每個側(cè)面是頂角為30°,腰長為4的三角形,E,F(xiàn)分別是PB,PC上的點,則△AEF的周長的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x-a)|x|+b.
(1)當(dāng)a=2,b=3,求函數(shù)y=f(x)的零點;
(2)設(shè)b=-2,且對任意x∈[-1,1],f(x)<0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C:x2+y2-8x+4y+19=0關(guān)于直線x+y+1=0對稱的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是計算t=12×22×…×i2的程序,程序中循環(huán)體執(zhí)行的次數(shù)為(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-4mx+1在[-2,+∞)為增函數(shù),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
16
+
y2
7
=1的準(zhǔn)線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log
1
2
(-x2-x+2)
的單調(diào)增區(qū)間為
 

查看答案和解析>>

同步練習(xí)冊答案