11.如圖,在四棱錐S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,求證:平面SBD⊥平面SAC;

分析 由已知條件推導(dǎo)出SA⊥BD,AC⊥BD,從而得到BD⊥平面SAC,由此能證明平面SBD⊥平面SAC.

解答 證明:∵SA⊥底面ABCD,∴SA⊥BD,
∵四邊形ABCD是菱形,∴AC⊥BD,
又SA∩AC=A,∴BD⊥平面SAC,
又BD?平面SBD,
∴平面SBD⊥平面SAC.

點(diǎn)評(píng) 本題考查直線與平面、平面與平面垂直的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=|\overrightarrow b|=\overrightarrow a•\overrightarrow b=2$,向量$\overrightarrow c$滿足$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)≤0$,則|$\overrightarrow c$|的最小值為$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線l經(jīng)過點(diǎn)$A(1,\sqrt{3})$和B(1,0),則直線l的傾斜角為(  )
A.B.60°C.90°D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知關(guān)于x的方程ex=ax+b(a>0,b∈R)有相等根,則a+b的最大值為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.$\frac{{x}^{2}}{3+m}$+$\frac{{y}^{2}}{2-m}$=1表示雙曲線,則m的取值范圍是m<-3或m>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在銳角△ABC中,已知內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,向量$\overrightarrow{m}$=(2sin(A+C),$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos$\frac{B}{2}$-1),且向量$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角B的大;
(2)如果b=1,求△ABC的面積S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式|x-1|>2的解為{x|x>3或x<-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合M={1,3,5,7,9},N={x|2x<9},則M∩N=( 。
A.{1,3,5}B.{1,3}C.{1}D.{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}(3a-1)x+4a,x<1\\-{x^2}+2ax+1,x≥1\end{array}\right.$是R上的減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1]B.$[{\frac{1}{5},\frac{1}{3}})$C.$({-∞,\frac{1}{3}})$D.$[{\frac{1}{5},1}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案