2.若直線(xiàn)l經(jīng)過(guò)點(diǎn)$A(1,\sqrt{3})$和B(1,0),則直線(xiàn)l的傾斜角為( 。
A.B.60°C.90°D.不存在

分析 由于A(yíng)B⊥x軸,可得傾斜角α=90°.

解答 解:設(shè)直線(xiàn)l的傾斜角為α,α∈[0°,180°),
∵AB⊥x軸,
∴α=90°.
故選:C.

點(diǎn)評(píng) 本題考查了垂直于x軸的直線(xiàn)的傾斜角,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知等比數(shù){an}的前n項(xiàng)和Sn,a1=1,S6=9S3
(Ⅰ){an}的通項(xiàng)公式;
(Ⅱ)若數(shù){bn}滿(mǎn)足a1b1+a2b2+…+anbn=(n-1)×2n+1,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=1+3x-x3的極大值是3,極小值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,$\overrightarrow{m}$=$({a,\sqrt{3}b})$,$\overrightarrow{n}$=(sinB,cosA),$\overrightarrow{m}$⊥$\overrightarrow{n}$,b=2,$a=\sqrt{7}$,則△ABC的面積為( 。
A.$\sqrt{3}$B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=$\left\{\begin{array}{l}{x-1,0<x≤2}\\{-1,-2≤x≤0}\end{array}\right.$,g(x)=f(x)+ax,x∈[-2,2]為偶函數(shù),則實(shí)數(shù)a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,已知拋物線(xiàn)C:x2=2py(0<p<4),其上一點(diǎn)M(4,y0)到其焦點(diǎn)F的距離為5,過(guò)焦點(diǎn)F的直線(xiàn)l與拋物線(xiàn)C交于A(yíng),B左、右兩點(diǎn).
(Ⅰ)求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;
(Ⅱ)若$\overrightarrow{AF}=\frac{1}{2}\overrightarrow{FB}$,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=|lnx|,$g(x)=\left\{{\begin{array}{l}{0,0<x≤1}\\{\frac{1}{8}|{{x^2}-9}|,x>1}\end{array}}\right.$,則方程f(x)-g(x)-1=0實(shí)根的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,求證:平面SBD⊥平面SAC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,則z=2x-y的最小值為(  )
A.-2B.-1C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案