3.不等式|x-1|>2的解為{x|x>3或x<-1}.

分析 利用絕對值意義去絕對值,也可兩邊平方去絕對值.然后求解即可.

解答 解:∵|x-1|>2,
∴x-1>2或x-1<-2,
∴x>3或x<-1.
∴不等式的解集為{x|x>3或x<-1}.
故答案為:{x|x>3或x<-1}.

點評 本題主要考查解絕對值不等式,屬基本題.解絕對值不等式的關鍵是去絕對值,去絕對值的方法主要有:利用絕對值的意義、討論和平方.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)y=1+3x-x3的極大值是3,極小值是-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=|lnx|,$g(x)=\left\{{\begin{array}{l}{0,0<x≤1}\\{\frac{1}{8}|{{x^2}-9}|,x>1}\end{array}}\right.$,則方程f(x)-g(x)-1=0實根的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱錐S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,求證:平面SBD⊥平面SAC;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.以A表示值域為R的函數(shù)組成的集合,B表示具有如下性質的函數(shù)φ(x)組成的集合:對于函數(shù)φ(x),存在一個正數(shù)M,使得函數(shù)φ(x)的值域包含于區(qū)間[-M,M].例如,當φ1(x)=x3,φ2(x)=sinx時,φ1(x)∈A,φ2(x)∈B.現(xiàn)有如下命題:
①設函數(shù)f(x)的定義域為D,則“f(x)∈A”的充要條件是“?b∈R,?a∈D,f(a)=b”;
②函數(shù)f(x)∈B的充要條件是f(x)有最大值和最小值;
③若函數(shù)f(x),g(x)的定義域相同,且f(x)∈A,g(x)∈B,則f(x)+g(x)∉B
④若函數(shù)$f(x)=aln({x+2})+\frac{x}{{{x^2}+1}}({x>-2,a∈R})$有最大值,則f(x)∈B.其中的真命題為( 。
A.①③B.②③C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2c,若橢圓上存在點M使得$\frac{a}{sin∠M{F}_{1}{F}_{2}}$=$\frac{c}{sin∠M{F}_{2}{F}_{1}}$,則該橢圓離心率的取值范圍為( 。
A.(0,$\sqrt{2}$-1)B.($\frac{\sqrt{2}}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$)D.($\sqrt{2}$-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知f(x)=$\left\{\begin{array}{l}{(3-a)x,x∈(-∞,2]}\\{{a}^{x-1},x∈(2,+∞)}\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么實數(shù)a的取值范圍是(  )
A.(1,3)B.(1,2)C.[2,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若實數(shù)x,y滿足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,則z=2x-y的最小值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知等比數(shù)列{an}的公比大于零,a1+a2=3,a3=4,數(shù)列{bn}是等差數(shù)列,${b_n}=\frac{{n({n+1})}}{n+c}$,c≠0是常數(shù).
(1)求的值,數(shù)列{an}與{bn}的通項公式;
(2)設數(shù)列{cn}滿足:當n為偶數(shù)時cn=an,當n為奇數(shù)時cn=bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習冊答案