分析 (1)利用分組法求和即可;
(2)利用錯位相減法計算即得結(jié)論;
(3)利用錯位相減法計算即得結(jié)論;
(4)利用錯位相減法計算即得結(jié)論.
解答 解:(1)∵an=(2n-1)+$\frac{1}{{2}^{n}}$,
∴Sn=$\frac{n[1+(2n-1)]}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$
=n2+1-$\frac{1}{{2}^{n}}$;
(2)∵an=(3n+2)•2-n,
∴Sn=5•$\frac{1}{2}$+8•$\frac{1}{{2}^{2}}$+…+(3n+2)•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Sn=5•$\frac{1}{{2}^{2}}$+8•$\frac{1}{{2}^{3}}$+…+(3n-1)•$\frac{1}{{2}^{n}}$+(3n+2)•$\frac{1}{{2}^{n+1}}$,
兩式相減得:$\frac{1}{2}$Sn=5•$\frac{1}{2}$+3($\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)-(3n+2)•$\frac{1}{{2}^{n+1}}$,
∴Sn=5+6($\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)-(3n+2)•$\frac{1}{{2}^{n}}$
=5+6•$\frac{\frac{1}{{2}^{2}}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{3n+2}{{2}^{n}}$
=8-$\frac{3n+8}{{2}^{n}}$;
(3)∵an=-$\frac{n}{{2}^{n-1}}$,
∴Sn=-1-1-3•$\frac{1}{{2}^{2}}$-…-n•$\frac{1}{{2}^{n-1}}$,
$\frac{1}{2}$Sn=-$\frac{1}{2}$-$\frac{1}{2}$-3•$\frac{1}{{2}^{3}}$-…-(n-1)•$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$,
兩式相減得:$\frac{1}{2}$Sn=-1-$\frac{1}{2}$-$\frac{1}{{2}^{2}}$-…-$\frac{1}{{2}^{n-1}}$+n•$\frac{1}{{2}^{n}}$,
∴Sn=-2-1-$\frac{1}{2}$-…-$\frac{1}{{2}^{n-2}}$+$\frac{n}{{2}^{n-1}}$
=-2-$\frac{1-\frac{1}{{2}^{n-1}}}{1-\frac{1}{2}}$+$\frac{n}{{2}^{n-1}}$
=-4+$\frac{n+2}{{2}^{n-1}}$;
(4)∵an=(3n-2)×($\frac{1}{4}$)n,
∴Sn=1•$\frac{1}{4}$+4•$\frac{1}{{4}^{2}}$+…+(3n-2)•$\frac{1}{{4}^{n}}$,
$\frac{1}{4}$Sn=1•$\frac{1}{{4}^{2}}$+4•$\frac{1}{{4}^{3}}$+…+(3n-5)•$\frac{1}{{4}^{n}}$+(3n-2)•$\frac{1}{{4}^{n+1}}$,
兩式相減得:$\frac{3}{4}$Sn=$\frac{1}{4}$+3($\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$)-(3n-2)•$\frac{1}{{4}^{n+1}}$,
∴Sn=$\frac{1}{3}$+4($\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$)-$\frac{4}{3}$(3n-2)•$\frac{1}{{4}^{n+1}}$
=$\frac{1}{3}$+4•$\frac{\frac{1}{{4}^{2}}(1-\frac{1}{{4}^{n-1}})}{1-\frac{1}{4}}$-$\frac{3n-2}{3}$•$\frac{1}{{4}^{n}}$
=$\frac{2}{3}$-$\frac{3n+2}{3}$•$\frac{1}{{4}^{n}}$.
點評 本題考查數(shù)列的求和,考查運算求解能力,利用錯位相減法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f-1(2x)=2f-1(x) | B. | f-1(2x)=$\frac{1}{2}$f-1(x) | C. | f-1(2x)=[f-1(x)]2 | D. | f-1(2x)=[f-1(x)]${\;}^{\frac{1}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\frac{1}{6}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com