【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如下表:

若將當日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”.已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為2:3.

(1)確定的值,并補全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當日被評為“皇冠店”,試判斷該網(wǎng)店當日能否被評為“皇冠店”.

【答案】(1)見解析2見解析

【解析】試題分析:(1)由頻數(shù)之和為“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為2:3,列出關于的方程組,由此能求出的值,并補全頻率分布直方圖;2根據(jù)頻率分布直方圖分別計算平均數(shù)和中位數(shù),再與題設條件做比較,即可判斷.

試題解析:(1)由題意,得

化簡,得,

解得

補全的頻率分布直方圖如圖所示:

(2)設這60名網(wǎng)友的網(wǎng)購金額的平均數(shù)為,

(千元)

又∵, ,

∴這60名網(wǎng)友的網(wǎng)購金額的中位數(shù)為1.5+0.3=1.8(千元)

∵平均數(shù),中位數(shù)

∴根據(jù)估算判斷,該網(wǎng)店當日不能被評為“皇冠店”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=-1.其中>0且≠1.

(1)求f(2)+f(-2)的值;

(2)求f(x)的解析式;

(3)解關于x的不等式-1<f(x-1)<4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

時,試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;

若不等式上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:若關于的方程無實數(shù)根,則;命題:若關于的方程有兩個不相等的正實數(shù)根,則.

(1)寫出命題的否命題,并判斷命題的真假;

(2)判斷命題“”的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線關于軸對稱,頂點在坐標原點,直線經(jīng)過拋物線的焦點.

(1)求拋物線的標準方程;

(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足,證明直線軸上一定點,并求出點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,解答下列問題:

(1)求輸入的的值分別為時,輸出的的值;

(2)根據(jù)程序框圖,寫出函數(shù))的解析式;并求當關于的方程有三個互不相等的實數(shù)解時,實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如下表:

若將當日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”.已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為2:3.

(1)確定的值,并補全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當日被評為“皇冠店”,試判斷該網(wǎng)店當日能否被評為“皇冠店”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐, 底面底面為正方形, 分別是的中點.

(Ⅰ)求證: ;

(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.

(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;

(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.

查看答案和解析>>

同步練習冊答案