函數(shù)f(x)=
1
5
x5-x4-4x3+7的極值點的個數(shù)是( 。
A、1個B、2個C、3個D、4個
考點:利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:由函數(shù)的解析式,我們易求出函數(shù)的導(dǎo)函數(shù)的解析式,令導(dǎo)函數(shù)為0,則我們可將函數(shù)的定義域分為若干個區(qū)間,討論在每個區(qū)間上導(dǎo)函數(shù)值的符號,結(jié)合函數(shù)在某點取得極值的條件,即可得到答案.
解答: 解:∵函數(shù)f(x)=
1
5
x5-x4-4x3+7
∴f′(x)=x4-4x3-12x2=x2(x+2)(x-6),
令f′(x)=0
則x=-2,x=0或x=6
又∵當(dāng)x∈(-∞,-2)時,f′(x)>0;
當(dāng)x∈(-2,0)時,f′(x)<0;
當(dāng)x∈(0,6)時,f′(x)<0;
當(dāng)x∈(6,+∞)時,f′(x)>0
故函數(shù)f(x)的極值點的個數(shù)有2個
故選:B.
點評:本題考查的知識點是函數(shù)在某點取得極值的條件,其中求出導(dǎo)函數(shù)值為零時的x值,進(jìn)而將函數(shù)的定義域分成若干個區(qū)間,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和是Sn,且a2=2,S4=4.
(1)求數(shù)列{an}的通項公式;
(2)在平面直角坐標(biāo)系中,若
m
=(4,s 2),
n
=(4k,-s3)
,且
m
n
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點O為圓心的兩個同心圓弧和延長后通過點O的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為x米,圓心角為θ(弧度).
(1)求θ關(guān)于x的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出x為何值時,y取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為D,若對于任意x1,x2∈D,當(dāng)x1<x2時,都有f(x1)≥f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:①f(0)=0;②f(
x
3
)=
1
2
f(x)
;③f(1-x)=1-f(x).則f(
1
6
)
=
 
;f(
1
4
)+f(
1
7
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD中,AE:EB=1:2,△AEF的面積為1cm2,則平行四邊形ABCD的面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(0,2)上單調(diào)遞減的是( 。
A、y=-
1
x
B、y=lnx
C、y=-
3x2
D、y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為2的正方體上,分別用過共頂點的三條棱中點的平面截該正方體,則截去8個三棱錐后,剩下的幾何體的體積是( 。
A、
4
3
B、8
C、
20
3
D、
16
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin480°+tan300°的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在 x∈(-∞,0)使得方程2x-
1
x-1
-a=0成立,則實數(shù)a的取值范圍是(  )
A、(2,+∞)
B、(0,+∞)
C、(0,2)
D、(0,1)

查看答案和解析>>

同步練習(xí)冊答案