8.在等差數(shù)列{an}中,已知a1=2,a8=9,則S14=119.

分析 由已知條件利用等差數(shù)列的通項(xiàng)公式求出公差,由此利用等差數(shù)列的前n項(xiàng)和公式能求出S14

解答 解:在等差數(shù)列{an}中,
∵a1=2,a8=9,
∴a1+7d=9,
解得d=1,
∴S14=14a1+$\frac{14×13}{2}d$=14×2+$\frac{14×13}{2}×1$=119.
故答案為:119.

點(diǎn)評(píng) 本題考查等差數(shù)列的前14項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)命題p:x2+2x-3<0 q:-5≤x<1,則命題p成立是命題q成立的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\frac{1+cos2α}{sin2α}$=$\frac{1}{2}$,則$\frac{1}{sinαcosα}$等于( 。
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=x+$\frac{1}{x-1}$(x>1)在x=a處取最小值,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱柱ABCD-A1B1C1D1中,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1,C,D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為E,F(xiàn)為BC的中點(diǎn),G在側(cè)棱AA1上,
(1)證明:E為BB1的中點(diǎn),
(2)若AG:A1G=3:1,求證:FG∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),0<α<$\frac{π}{2}$),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos2θ+2cosθ=ρ(ρ≥0,0≤θ<2π),直線l與曲線C交干A,B兩點(diǎn)
(1)求證:OA⊥OB;
(2)若α=$\frac{π}{4}$,求直線與l平行的曲線C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.畫出函數(shù)y=2|x+1|+1的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列等式:①f(x+y)=f(x)+f(y);②f(xy)=f(x)+f(y);③f(x+y)=f(x)•f(y);④f(xy)=f(x)•f(y)中,則指數(shù)函數(shù)f(x)=2x滿足的是第③條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知橢圓C1與雙曲線C2的公共焦點(diǎn)F1,F(xiàn)2,點(diǎn)P是曲線C1與C2的一個(gè)交點(diǎn),并且PF1⊥PF2,e1,e2分別是橢圓和雙曲線的離心率,則4e${\;}_{1}^{2}$+e${\;}_{2}^{2}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案