分析 由題設中的條件,設焦距為2c,橢圓的長軸長2a,雙曲線的實軸長為2m,根據橢圓和雙曲線的性質以及勾弦定理建立方程,聯(lián)立可得m,a,c的等式,整理即可得到$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=2,再利用基本不等式,即可得出結論.
解答 解:由題意設焦距為2c,橢圓的長軸長2a,雙曲線的實軸長為2m,不妨令P在雙曲線的右支上
由雙曲線的定義|PF1|-|PF2|=2m ①
由橢圓的定義|PF1|+|PF2|=2a ②
又∠F1PF2=90°,故|PF1|2+|PF2|2=4c2 ③
①2+②2得|PF1|2+|PF2|2=2a2+2m2④
將④代入③得a2+m2=2c2,可得$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=2,
∴4e${\;}_{1}^{2}$+e${\;}_{2}^{2}$=$\frac{1}{2}$($\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$)(4e${\;}_{1}^{2}$+e${\;}_{2}^{2}$)=$\frac{1}{2}$(5+$\frac{{{e}_{2}}^{2}}{{{e}_{1}}^{2}}$+$\frac{4{{e}_{1}}^{2}}{{{e}_{2}}^{2}}$)≥$\frac{1}{2}$(5+4)=$\frac{9}{2}$
故答案為:$\frac{9}{2}$.
點評 本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義焦點三角形中用勾弦定理建立三個方程聯(lián)立求橢圓離心率e1與雙曲線心率e2滿足的關系式,解決本題的關鍵是根據所得出的條件靈活變形,湊出兩曲線離心率所滿足的方程來.
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 2016 | C. | 4032 | D. | 4033 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com