17.設x≥0,y≥0,且x+y≤4,則$\frac{y+1}{x+1}$的最大值為5.

分析 由約束條件作出可行域,由$\frac{y+1}{x+1}$的幾何意義求得最大值.

解答 解:由x≥0,y≥0,且x+y≤4作出可行域如圖,

$\frac{y+1}{x+1}$的幾何意義為可行域內的動點(x,y)與點P(-1,-1)連線的斜率,
其最大值為${k}_{PB}=\frac{4-(-1)}{0-(-1)}=5$.
故答案為:5.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=1,(n+1)an+1=nan,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=$\frac{{2}^{n}}{{a}_{n}}$,數(shù)列{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow$=(cosβ,sinβ),0<α<β<2π.
(1)若$\overrightarrow{c}$=(1,1),且$\overrightarrow{a}$∥$\overrightarrow{c}$,求α的值;
(2)若$\overrightarrow{a}$$•\overrightarrow$=1,cos(α+β)=$\frac{1}{3}$,求tanαtanβ的值;
(3)設$\overrightarrow{c}$=(2,0),若$\overrightarrow{a}$$+2\overrightarrow$=$\overrightarrow{c}$,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.化簡:
(1)$\frac{cos(α-π)}{sin(π-α)}•sin(α-\frac{π}{2})•cos(\frac{π}{2}-α)$;
(2)$\frac{cos(\frac{3π}{2}-α)sin(\frac{π}{2}+α)}{sin(\frac{π}{2}-α)tan(3π-α)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)已知cos(π+α)=-$\frac{1}{2}$,計算sin(2π-α)-tan(α-3π)的值.
(2)求$\frac{tan(2π-α)•cos(2π-α)•sin(-α+\frac{3π}{2})}{cos(-α+π)•sin(-π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知sinα-cosα=$\frac{17}{13}$,α∈(0,π),求sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求函數(shù)y=$\sqrt{lo{g}_{3}sinx}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)f(x)=$\sqrt{2}$sin(2ωx+$\frac{π}{4}$).
(1)當ω=1,x∈(0,$\frac{π}{2}$)時,求函數(shù)f(x)的值域;
(2)當ω=-1時,求函數(shù)f(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若直線經過點(0,3),且斜率為-2,則直線的方程是2x+y-3=0.

查看答案和解析>>

同步練習冊答案