某園藝師培育了兩種珍稀樹苗A與B,株數(shù)分別為12與18,現(xiàn)將這30株樹苗的高度編寫成莖葉圖如圖(單位:cm)若樹高在175cm以上(包括175cm)定義為“生長良好”,樹高在175cm以下(不包括175cm)定義為“非生長良好”,且只有“B生長良好”的才可以出售.
(Ⅰ)如果用分層抽樣的方法從“生長良好”和“非生長良好”中抽取5株,再從這5株中選2株,那么至少有一株“生長良好”的概率是多少?
(Ⅱ)若從所有“生長良好”中選3株,用X表示所選中的樹苗中能出售的株數(shù),試寫出X的分布列,并求X的數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,莖葉圖
專題:概率與統(tǒng)計(jì)
分析:(1)結(jié)合排列組合知識(shí)求解,(2)先求出隨機(jī)變量X的值,再分別求出概率,得出分布列,運(yùn)用數(shù)學(xué)期望的公式求解.
解答: 解:(Ⅰ)根據(jù)莖葉圖知,“生長良好”的有12株,“非生長良好”的有18株.
用分層抽樣的方法抽取,每株被抽中的概率是
5
30
=
1
6

“生長良好”的有12×
1
6
=2
株,“非生長良好”的有18×
1
6
=3
株.
用事件A表示“至少有一株‘生長良好’的被選中”,
P(A)=1-
C
2
3
C
2
5
=1-
3
10
=
7
10

因此從5株樹苗中選2株,至少有一株“生長良好”的概率是
7
10
,
(Ⅱ)依題意,一共有12株生長良好,其中A種樹苗有8株,B種樹苗有4株,則X的所有可能取值為0,1,2,3,
P(X=0)=
C
3
8
C
3
12
=
14
55
;P(X=1)=
C
2
8
C
1
4
C
3
12
=
28
55
;P(X=2)=
C
2
4
C
1
8
C
3
12
=
12
55
;P(X=3)=
C
3
4
C
3
12
=
1
55

因此X的分布列如下:
X0123
P
14
55
28
55
12
55
1
55
所以X的數(shù)學(xué)期望:0×
14
55
+1×
28
55
+2×
12
55
+3×
1
55
=1
點(diǎn)評(píng):本考查了實(shí)際問題和概率問題,統(tǒng)計(jì)知識(shí)與古典概率的求解,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面四邊形ABCD中,AB=BC=CD=DA=BD=6,O為AC,BD的交點(diǎn).將四邊形ABCD沿對(duì)角線AC折起,得到三棱錐B-ACD,且BD=3
2

(Ⅰ)若M點(diǎn)是BC的中點(diǎn),求證:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

鐘表經(jīng)過4小時(shí),時(shí)針與分針各轉(zhuǎn)了
 
度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-a)•|x|的圖象與直線y=1有且只有一個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=-x2+ax-
a
4
+
1
2
,x∈[-1,1]的最大值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某校在一次考試中,5名學(xué)生的數(shù)學(xué)和地理成績?nèi)绫恚?br />
學(xué)生的編號(hào)i12345
數(shù)學(xué)成績x8075706560
地理成績y7066686462
(1)根據(jù)上表,利用最小二乘法,求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
(其中
b
=0.36);
(2)利用(1)中的線性回歸方程,試估計(jì)數(shù)學(xué)90分的同學(xué)的地理成績(四舍五入到整數(shù));
(3)若從五人中選2人參加數(shù)學(xué)競賽,其中1、2號(hào)不同時(shí)參加的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,延長CB到D,使BD=BC,當(dāng)E點(diǎn)在線段AD上移動(dòng)時(shí),若
AE
AB
AC
,則t=λ-μ的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,a+b=1,則ab+
1
ab
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,AA1=AD=2,E為CD中點(diǎn).
(1)求證:B1E⊥AD1;
(2)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長.若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案