化簡:4sin(x+10°)+10cos(x+40°)
考點:兩角和與差的正弦函數(shù),兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:將角“x+40°”表示成“(x+10°)+30°”,利用兩角差與和的余弦公式、輔助角公式進行化簡.
解答: 解:4sin(x+10°)+10cos(x+40°)
=4sin(x+10°)+10cos[(x+10°)+30°]
=4sin(x+10°)+10cos(x+10°)cos30°-10sin(x+10°)sin30°
=5
3
cos(x+10°)-sin(x+10°)
=
76
cos(x+10°+θ)
,其中tanθ=
3
15
點評:本題考查兩角差與和的余弦公式,以及輔助角公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若過點A(0,-1)的直線l與圓x2+(y-3)2=4的圓心的距離記為d,則d的取值范圍為(  )
A、[0,4]
B、[0,3]
C、[0,2]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中裝有若干個形狀大小相同的小球,其中2個標有數(shù)字1,3個標有數(shù)字2,n個標有數(shù)字3,取出一球記下所標數(shù)字后放回,再取一球記下所標數(shù)字,兩次取球所標數(shù)字不相同的概率與兩次取球所標數(shù)字相同的概率之差為
5
16

(1)求n的值;
(2)記兩次取球所標數(shù)字之和為X,求X的分布列與均值(數(shù)學期望).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應數(shù)軸上的點M(點A對應實數(shù)0,點B對應實數(shù)1),如圖①;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖②;再將這個圓放在平面直角坐標系中,使其圓心在y軸上,點A的坐標為(0,1),在圖形變化過程中,圖①中線段AM的長度對應于圖③中的弧ADM的長度,如圖③,圖③中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.
給出下列命題:①f(
1
4
)=1;
②f(
1
2
)=0;
③f(x)是奇函數(shù);
④f(x)在定義域上單調遞增,
則所有真命題的序號是( 。
A、①②B、②③C、①④D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,點A,B,C的坐標分別為(0,1),(
2
,0),(0,-2)
,O為坐標原點,動點P滿足|
CP
|=1
,則|
OA
+
OB
+
OP
|
的最小值是( 。
A、4-2
3
B、
3
+1
C、
3
-1
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(α+β)=
3
5
,cos(α-β)=
1
10
,求[sinα+cos(π+α)]•[sinβ-sin(
π
2
+β)]的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A,B,C所對的邊分別為a,b,c,已知A為鈍角,且2asinB=
3
b.
(1)求∠A的大。
(2)若a2-b2=2c,求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,且Sn=n-an(n∈N+).
(1)求證:數(shù)列{an-1}為等比數(shù)列,并寫出{an}的通項公式;
(2)設bn=a(an-1)-(2n+1)(a為常數(shù)).若b3>0,當且僅當a=3時,|bn|取到最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2|x|-3.
(1)作出函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的單調區(qū)間,以及在各單調區(qū)間的奇偶性;
(2)求函數(shù)f(x)在x∈(-2,4]時的最大值與最小值.

查看答案和解析>>

同步練習冊答案