計(jì)算
(1)設(shè)f(x)=e|x|,求
4
-2
f(x)dx的值;
(2)求
C
2
3
+C
2
4
+C
2
5
+…
+C
2
30
的值(結(jié)果用數(shù)字作答).
考點(diǎn):組合及組合數(shù)公式,定積分
專(zhuān)題:排列組合
分析:(1)先將∫-24f(x)dx轉(zhuǎn)化成=∫02exdx+∫04exdx,由定積分的定義可得;(2),先添加一項(xiàng)
C
3
3
,由組合數(shù)的性質(zhì)
C
r
n
+
C
r+1
n
=
C
r+1
n+1
逐步計(jì)算可得.
解答: 解:(1)
4
-2
f(x)dx=∫-20e|x|dx+∫04exdx
=∫02exdx+∫04exdx=e2-e0+e4-e0
=e4+e2-2
(2)
C
2
3
+C
2
4
+C
2
5
+…
+C
2
30
=
C
3
3
+
C
2
3
+C
2
4
+C
2
5
+…
+C
2
30
-1
=
C
3
4
+
C
2
4
+C
2
5
+…
+C
2
30
-1=
C
3
5
+C
2
5
+…
+C
2
30
-1
=…=
C
3
31
-1=4495-1=4994
點(diǎn)評(píng):本題考查定積分和組合數(shù)的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線x2=2py(p>0)的焦點(diǎn)為F,頂點(diǎn)為O,準(zhǔn)線為l,過(guò)該拋物線上異于頂點(diǎn)O的任意一點(diǎn)A作AA1⊥l于點(diǎn)A1,以線段AF,AA1為鄰邊作平行四邊形AFCA1,連接直線AC交l于點(diǎn)D,延長(zhǎng)AF交拋物線于另一點(diǎn)B.若△AOB的面積為S△AOB,△ABD的面積為S△ABD,則
(S△AOB)2
S△ABD
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
1-x
的定義域?yàn)镸,函數(shù)g(x)=lg(1+x)的定義域?yàn)镹,則( 。
A、M∩N=(-1,1]
B、M∩N=R
C、∁RM=[1,+∞)
D、∁RN=(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓C的方程為
x2
12
+
y2
b2
=1(b2<12)
,且長(zhǎng)軸長(zhǎng)與焦距之比為
3
2
,圓O的圓心在原點(diǎn)O,且經(jīng)過(guò)橢圓C的短軸頂點(diǎn).
(1)求橢圓C和圓O的方程;
(2)是否存在同時(shí)滿(mǎn)足下列條件的直線l:
    ①與圓O相切與點(diǎn)M(M位于第一象限);
    ②與橢圓C相交于A、B兩點(diǎn),使得
OA
OB
=2
.若存在,求出此直線方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

斜率為2的直線l與雙曲線
x2
3
-
y2
2
=1
交于A,B兩點(diǎn),且|AB|=4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P(0,-1)是橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2x2+y2=4的直徑.l1,l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中斜率為k的直線l1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D
(1)求橢圓C1的方程;
(2)試用k表示△ABD的面積S;
(3)求△ABD面積S取最大值時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cos(θ-
π
4
) 1)
,
b
=(3,0),其中θ∈(
π
2
, 
4
)
,若
a
b
=1.
(Ⅰ)求sinθ的值;
(Ⅱ)求tan2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z=2y-2x+4,式中x,y滿(mǎn)足條件
0≤x≤1
0≤y≤2
2y-x≥1
,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M是滿(mǎn)足下列條件的函數(shù)f(x)的全體:
(1)f(x)既不是奇函數(shù)也不是偶函數(shù);(2)函數(shù)f(x)有零點(diǎn).那么在函數(shù)
①f(x)=|x|-1,②f(x)=2x-1,③f(x)=
x-2,x>0
0,x=0
x+2,x<0

④f(x)=x2-x-1+lnx中,
屬于M的有
 
.(寫(xiě)出所有符合的函數(shù)序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案