17.某人月初0元購入一部5000元的手機(jī),若采用分期付款的方式每月月底等額還款,分l0個月還清,月利率0.1%按復(fù)利計算,則他每月應(yīng)還款(1.011.00110≈1.01)( 。
A.500元B.505元C.510元D.515元

分析 根據(jù)條件,結(jié)合等比數(shù)列的前n項和公式建立方程關(guān)系即可得到結(jié)論

解答 解:把5000元存入銀行10個月,
月利0.1%,按復(fù)利計算,則本利和為5000×(1+0.1)10=5000×(1.001)10=5000×1.01=5050,
每月存入銀行a元,月利0.1%,按復(fù)利計算,
則本利和為a+a(1+0.1%)+a(1+0.1%)2+…+a(1+0.1%)9=a•$\frac{1-(1+0.1%)^{10}}{-0.1%}$=a•$\frac{1.01-1}{0.001}$=10a.
由題意知10a=5050,
解得a=505(元).
即每月還款大約為505元,
故選:B

點評 本題主要考查函數(shù)的應(yīng)用問題,結(jié)合等比數(shù)列的前n項和公式是解決本題的關(guān)鍵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若${∫}_{1}^{a}(2x+\frac{1}{x})dx$=3+lna,則a的值是( 。
A.6B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.30°B.45°C.60°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx+mx2(m∈R)   
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若m=0,A(a,f(a))、B(b,f(b))是函數(shù)f(x)圖象上不同的兩點,且a>b>0,f′(x)為f(x)的導(dǎo)函數(shù),求證:f′($\frac{a+b}{2}$)<$\frac{f(a)-f(b)}{a-b}$<f′(b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓C:x2+y2+2x-4y+3=0,設(shè)點A(0,a)(a>0),若圓C上存在點M,使MA=$\sqrt{2}$MO,則a的取值范圍$\sqrt{3}$≤a≤4+$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.各項均為實數(shù)的等比數(shù)列{an}中,a1=1,a3=2,則a5=( 。
A.4B.$\sqrt{2}$C.±4D.±$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某農(nóng)戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設(shè)種植黃瓜和韭菜的產(chǎn)量、成本和價格如表所示:
  年產(chǎn)量/畝年種植成本/畝 每噸售價 
 黃瓜 4噸 1.2萬元 0.55萬元
 韭菜6噸  0.9萬元 0.3萬元
為使一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大,那么黃瓜的面積是30畝.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過l1:3x-5y-5=0和l2:x+y+1=0的交點,且與l3:x+2y-5=0垂直的直線方程為2x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知一條直線過點P(2,-3)與直線2x-y-1=0和直線x+2y-4=0分別交于點A,B.且點P為線段AB的中點,求這條直線的方程.

查看答案和解析>>

同步練習(xí)冊答案