已知:a≥2,x∈R.求證:|x-1+a|+|x-a|≥3.
考點(diǎn):絕對值不等式的解法
專題:證明題
分析:利用|m|+|n|≥|m-n|,將所證不等式轉(zhuǎn)化為:|x-1+a|+|x-a|≥|2a-1|,再結(jié)合題意a≥2即可證得.
解答: 證明:∵|m|+|n|≥|m-n|,
∴|x-1+a|+|x-a|≥|x-1+a-(x-a)|=|2a-1|.
又a≥2,故|2a-1|≥3.
∴|x-1+a|+|x-a|≥3(證畢).
點(diǎn)評:本題考查絕對值不等式,著重考查|m|+|n|≥|m-n|的應(yīng)用,考查推理證明能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P是直線3x+4y+8=0上的動點(diǎn),C是圓x2+y2-2x-2y+1=0的圓心,那么|PC|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖的程序框圖,則輸出的S=(  )
A、7B、8C、15D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α內(nèi)有一個以AB為直徑的圓,PA⊥α,點(diǎn)C在圓周上(不同于A、B兩點(diǎn)),點(diǎn)D、E分別是點(diǎn)A在PC、PB上的射影,則( 。
A、PC⊥面ADE
B、∠ACB是二面角A-PC-B的平面角
C、BC∥面ADE
D、PB⊥面ADE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為圓A:(x+1)2+y2=8上的動點(diǎn),點(diǎn)B(1,0).線段PB的垂直平分線與半徑PA相交于點(diǎn)M,記點(diǎn)M的軌跡為Γ.
(I)求曲線Γ的方程;
(Ⅱ)當(dāng)點(diǎn)P在第一象限,且cos∠BAP=
2
2
3
時,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)fk(x)=
alnx
xk
為f(x)的k階函數(shù).
(1)求一階函數(shù)f1(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時,討論方程f2(x)=1的解的個數(shù);
(3)求證:3lnx≤x3ex-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={f(x)|x∈(0,+∞),f(x)=f(
1
x
)}

(1)已知函數(shù)f(x)=
x
1+x2
(x>0)
,求證:f(x)∈M;
(2)對于(1)中的函數(shù)f(x),求證:存在定義域?yàn)閇2,+∞)的函數(shù)g(x),使得g(x+
1
x
)=f(x)
對任意x>0成立.
(3)對于任意f(x)∈M,求證:存在定義域?yàn)閇2,+∞)的函數(shù)g(x),使得等式g(x+
1
x
)=f(x)
對任意x>0成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an-1(n∈N*),等差數(shù)列{bn}滿足b1=3a1,b3=S2+3.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=
bn
3an
,求數(shù)列{cn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖所示的偽代碼,最后輸出的a的值為
 

查看答案和解析>>

同步練習(xí)冊答案