分析 由條件利用同角三角函數(shù)的基本關系,二倍角的余弦公式求得tanα的值.
解答 解:cos2α=$\frac{{cos}^{2}α{-sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{1{-tan}^{2}α}{{tan}^{2}α+1}$=$\frac{5}{13}$,且$\frac{3π}{2}$<α<2π,則tanα=-$\frac{\sqrt{6}}{3}$,或 tanα=$\frac{\sqrt{6}}{3}$(舍去),
故答案為:-$\frac{\sqrt{6}}{3}$.
點評 本題主要考查同角三角函數(shù)的基本關系,二倍角的余弦公式的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com