【題目】已知四棱錐中,底面是直角梯形,∥,,,,又平面,且,點在棱上且.
(1)求證:;
(2)求與平面所成角的正弦值;
(3)求二面角的大小.
【答案】(1)答案見解析(2)(3)
【解析】
(1)推導(dǎo)出,從而平面,進而,由此能證明平面,即可求得答案;
(2)由(1)可得:平面,所以為與平面所成角,求出長,即可求得答案;
(3)連結(jié),交于點,,從而平面平面,進而平面,過作于點,連結(jié),則,則為二面角的平面角,即可求得答案.
(1)取中點為,連接
,
底面是直角梯形,
∥,即∥
又
四邊形是平行四邊形
可得,中點為,
根據(jù)直角三角形性質(zhì)可得:為直角三角形,且
又平面
平面
平面
(2)由(1)可得:平面
為與平面所成角
為直角三角形,,
又 ,
為等腰直角三角形
在中,
與平面所成角的正弦值.
(3)連結(jié),交于點,,如圖:
平面,
平面平面,
平面
過作于點,連結(jié),則,
為二面角的平面角,
在中,
在中,
在中,
二面角的大小為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中“sinA>sinB”是“cosA<cosB”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是水資源匱乏國家,節(jié)約用水是每個中國公民應(yīng)有的意識.為了保護水資源,提倡節(jié)約用水,某城市對居民生活用水實行“階梯水價”,計費方法如下表:
每戶每月用水量 | 水價 |
不超過12的部分 | 3元/ |
超過12但不超過18的部分 | 6元/ |
超過18的部分 | 9元/ |
(1)該城市居民小張家月用水量記為,應(yīng)交納水費y(元),試建立y與x的函數(shù)解析式,并作出其圖像;
(2)若小張家十月份交納水費90元,求他家十月份的用水量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,解不等式;
(2)若關(guān)于的方程在區(qū)間上恰有一個實數(shù)解,求的取值范圍;
(3)設(shè),若存在使得函數(shù)在區(qū)間上的最大值和最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點M(0,2),N(-2,0),直線l:kx-y-2k+2=0(k為常數(shù)).
(1)若點M,N到直線l的距離相等,求實數(shù)k的值;
(2)對于l上任意一點P,∠MPN恒為銳角,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有1200名學(xué)生,隨機抽出300名進行調(diào)查研究,調(diào)查者設(shè)計了一個隨機化裝置,這是一個裝有大小、形狀和質(zhì)量完全相同的10個紅球,10個綠球和10個白球的袋子.調(diào)查中有兩個問題:
問題1:你的陽歷生日月份是不是奇數(shù)?
問題2:你是否抽煙?
每個被調(diào)查者隨機從袋中摸出1個球(摸出后再放回袋中).若摸到紅球就如實回答第一個問題,若摸到綠球,則不回答任何問題;若摸到白球,則如實回答第二個問題.所有回答“是”的調(diào)查者只需往一個盒子中放一個小石子,回答“否”的被調(diào)查者什么也不用做.最后收集回來53個小石子,估計該學(xué)校吸煙的人數(shù)有多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).
(1)證明:在上單調(diào)遞增;
(2)函數(shù),如果總存在,對任意,都成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面ABCD為矩形,點E在線段PA上,平面BDE.
求證:;
若是等邊三角形,,平面平面ABCD,四棱錐的體積為,求點E到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在實數(shù)對,使得等式對定義域中的任意都成立,則稱函數(shù)是“型函數(shù)”.
(1)若函數(shù)是“型函數(shù)”,且,求出滿足條件的實數(shù)對;
(2)已知函數(shù).函數(shù)是“型函數(shù)”,對應(yīng)的實數(shù)對為,當(dāng)時,.若對任意時,都存在,使得,試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com