分析 (Ⅰ)運用基本不等式,累乘即可得證;
(Ⅱ)由a、b、c∈R+,且a+b+c=1,將不等式的左邊變形后,再由基本不等式,累乘即可得證.
解答 證明:(Ⅰ)a,b∈R+,a+b≥2$\sqrt{ab}$,
a2+b2≥2ab,a3+b3≥2$\sqrt{{a}^{3}^{3}}$,
三式相乘可得,(a+b)(a2+b2)(a3+b3)≥8a3b3,
當且僅當a=b取得等號;
(Ⅱ)a、b、c∈R+,且a+b+c=1,
可得$\frac{1}{a}$-1=$\frac{b+c}{a}$≥$\frac{2\sqrt{bc}}{a}$,$\frac{1}$-1=$\frac{a+c}$≥$\frac{2\sqrt{ac}}$,
$\frac{1}{c}$-1=$\frac{a+b}{c}$≥$\frac{2\sqrt{ab}}{c}$,
相乘可得,$\frac{b+c}{a}$•$\frac{a+c}$•$\frac{a+b}{c}$≥$\frac{2\sqrt{bc}}{a}$•$\frac{2\sqrt{ac}}$•$\frac{2\sqrt{ab}}{c}$=8,
則有$({\frac{1}{a}-1})({\frac{1}-1})({\frac{1}{c}-1})≥8$.
點評 本題考查不等式的證明,注意運用基本不等式和累乘法,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | 6 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 101 101 | B. | 11 011 011 | C. | 1 101 111 | D. | 1 011 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com