5.已知數(shù)列{an}中,a1=3,a2=6,an+2=an+1-an,則a2015=( 。
A.-6B.6C.-3D.3

分析 利用a1=3,a2=6,an+2=an+1-an,可得an+5=an.即可得出.

解答 解:∵a1=3,a2=6,an+2=an+1-an
∴a3=3,a4=-3,a5=-6,a5=-3,a6=3,a7=6,….
∴an+5=an
則a2015=a5×403=a5=-3.
故選:C.

點(diǎn)評(píng) 本題考查了遞推關(guān)系的應(yīng)用、數(shù)列的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知等差數(shù)列{an}中,Sn為其前n項(xiàng)和,且a4=5,S6=-39.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\overrightarrow a=({1,-1,1})$,則與向量$\overrightarrow a$共線的單位向量是(  )
A.$\overrightarrow n=±({1,-1,1})$B.$\overrightarrow n=±({\frac{1}{3},-\frac{1}{3},\frac{1}{3}})$C.$\overrightarrow n=±({\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$D.$\overrightarrow n=±({\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a=log3650.99、b=1.01365、c=0.99365,則a、b、c的大小關(guān)系為( 。
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在等差數(shù)列{an}中,a1=-2015,其前n項(xiàng)和為Sn,若$\frac{{S}_{12}}{12}$-$\frac{{S}_{10}}{10}$=2,則S2015的值等于:-2015.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在正方體ABCD-A1B1C1D1中,E為A1C1的中點(diǎn),則異面直線CE與BD所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(Ⅰ)已知a,b∈R+,求證:(a+b)(a2+b2)(a3+b3)≥8a3b3;
(Ⅱ)已知a、b、c∈R+,且a+b+c=1.求證:$({\frac{1}{a}-1})({\frac{1}-1})({\frac{1}{c}-1})≥8$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點(diǎn)F1、F2與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成邊長(zhǎng)為4的正三角形.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知過橢圓C上一點(diǎn)(x0,y0),與橢圓C相切的直線方程為$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1.過橢圓C上任意一點(diǎn)P作橢圓C的切線與直線F1P的垂線F1M相交于點(diǎn)M,求點(diǎn)M的軌跡方程;
(Ⅲ)若切線MP與直線x=-2交于點(diǎn)N,求證:$\frac{{|N{F_1}|}}{{|M{F_1}|}}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知P(t,3t),t∈R,M是圓O1:(x+2)2+y2=$\frac{1}{4}$上的動(dòng)點(diǎn),N是O2:(x-4)2+y2=$\frac{1}{4}$上的動(dòng)點(diǎn),則|PN|-|PM|的最大值是( 。
A.$\frac{3\sqrt{5}}{5}$+1B.$\frac{3\sqrt{5}}{5}-1$C.$\frac{6\sqrt{5}}{5}$+1D.$\frac{6\sqrt{5}}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案