【題目】如圖,正方形的邊長為1,E,F分別是,的中點(diǎn),交EF于點(diǎn)D,現(xiàn)沿SE,SF及EF把這個(gè)正方形折成一個(gè)四面體,使,,三點(diǎn)重合,重合后的點(diǎn)記為G,則在四面體中必有( )
A.平面EFG
B.設(shè)線段SF的中點(diǎn)為H,則平面SGE
C.四面體的體積為
D.四面體的外接球的表面積為
【答案】ABD
【解析】
對選項(xiàng)折成四面體后,,,由此能證明平面;對選項(xiàng),證明SE,即得證;對選項(xiàng),求出四面體的體積為,即得解;對選項(xiàng),求出三棱錐的外接球的半徑為,即得解.
對選項(xiàng),在折前正方形中,,,
折成四面體后,,,
又, 平面,平面.
所以選項(xiàng)正確.
對選項(xiàng),
對選項(xiàng),連接因?yàn)?/span>,,
所以,
因?yàn)?/span>平面,平面,
所以平面SGE.
所以選項(xiàng)正確.
對選項(xiàng),
前面已經(jīng)證明平面,
所以是三棱錐的高,且.
由題得,,
所以.
所以,
所以四面體的體積為.
所以選項(xiàng)錯(cuò)誤.
對選項(xiàng),由于,
所以可以把三棱錐放到長方體模型之中,長方體的三條棱為,
所以三棱錐的外接球的直徑.
所以選項(xiàng)正確.
故選:ABD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求的單調(diào)性和極值;
(Ⅱ)若函數(shù)至少有1個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)前后,一場突如其來的新冠肺炎疫情在武漢出現(xiàn)并很快地傳染開來(已有證據(jù)表明2019年10月、11月國外已經(jīng)存在新冠肺炎病毒),人傳人,傳播快,傳播廣,病亡率高,對人類生命形成巨大危害.在中華人民共和國,在中共中央、國務(wù)院強(qiáng)有力的組織領(lǐng)導(dǎo)下,全國人民萬眾一心抗擊、防控新冠肺炎,疫情早在3月底已經(jīng)得到了非常好的控制(累計(jì)病亡人數(shù)3869人).然而,國外因國家體制、思想觀念與中國的不同,防控不力,新冠肺炎疫情越來越嚴(yán)重.據(jù)美國約翰斯·霍普金斯大學(xué)每日下午6時(shí)公布的統(tǒng)計(jì)數(shù)據(jù),選取5月6日至5月10日的美國的新冠肺炎病亡人數(shù)如下表(其中t表示時(shí)間變量,日期“5月6日”、“5月7日”對應(yīng)于“t=6"、“t=7",依次下去),由下表求得累計(jì)病亡人數(shù)與時(shí)間的相關(guān)系數(shù)r=0.98.
(1)在5月6日~10日,美國新冠肺炎病亡人數(shù)與時(shí)間(日期)是否呈現(xiàn)線性相關(guān)性?
(2)選擇對累計(jì)病亡人數(shù)四舍五入后個(gè)位、十位均為0的近似數(shù),求每日累計(jì)病亡人數(shù)y隨時(shí)間t變化的線性回歸方程;
(3)請估計(jì)美國5月11日新冠肺炎病亡累計(jì)人數(shù),請初步預(yù)測病亡人數(shù)達(dá)到9萬的日期.
附:回歸方程中斜率和截距最小二乘估計(jì)公式分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合.由集合P中所有的點(diǎn)組成的圖形如圖中陰影部分所示,中間白色部分形如美麗的“水滴”.給出下列結(jié)論:
①“水滴”圖形與y軸相交,最高點(diǎn)記為A,則點(diǎn)A的坐標(biāo)為;
②在集合P中任取一點(diǎn)M,則M到原點(diǎn)的距離的最大值為3;
③陰影部分與y軸相交,最高點(diǎn)和最低點(diǎn)分別記為C,D,則;
④白色“水滴”圖形的面積是.
其中正確的有______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)直線與軸的交點(diǎn)為,經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國女排,曾經(jīng)十度成為世界冠軍,鑄就了響徹中華的女排精神.女排精神的具體表現(xiàn)為:扎扎實(shí)實(shí),勤學(xué)苦練,無所畏懼,頑強(qiáng)拼搏,同甘共苦,團(tuán)結(jié)戰(zhàn)斗,刻苦鉆研,勇攀高峰.女排精神對各行各業(yè)的勞動者起到了激勵(lì)、感召和促進(jìn)作用,給予全國人民巨大的鼓舞.
(1)看過中國女排的紀(jì)錄片后,某大學(xué)掀起“學(xué)習(xí)女排精神,塑造健康體魄”的年度主題活動,一段時(shí)間后,學(xué)生的身體素質(zhì)明顯提高,將該大學(xué)近5個(gè)月體重超重的人數(shù)進(jìn)行統(tǒng)計(jì),得到如下表格:
月份x | 1 | 2 | 3 | 4 | 5 |
體重超重的人數(shù)y | 640 | 540 | 420 | 300 | 200 |
若該大學(xué)體重超重人數(shù)y與月份變量x(月份變量x依次為1,2,3,4,5…)具有線性相關(guān)關(guān)系,請預(yù)測從第幾月份開始該大學(xué)體重超重的人數(shù)降至10人以下?
(2)在某次排球訓(xùn)練課上,球恰由A隊(duì)員控制,此后排球僅在A隊(duì)員、B隊(duì)員和C隊(duì)員三人中傳遞,已知每當(dāng)球由A隊(duì)員控制時(shí),傳給B隊(duì)員的概率為,傳給C隊(duì)員的概率為;每當(dāng)球由B隊(duì)員控制時(shí),傳給A隊(duì)員的概率為,傳給C隊(duì)員的概率為;每當(dāng)球由C隊(duì)員控制時(shí),傳給A隊(duì)員的概率為,傳給B隊(duì)員的概率為.記,,為經(jīng)過n次傳球后球分別恰由A隊(duì)員、B隊(duì)員、C隊(duì)員控制的概率.
(i)若,B隊(duì)員控制球的次數(shù)為X,求;
(ii)若,,,,,證明:為等比數(shù)列,并判斷經(jīng)過200次傳球后A隊(duì)員控制球的概率與的大小.
附1:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:;.
附2:參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,點(diǎn)是上一點(diǎn),且線段的中點(diǎn)坐標(biāo)為.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若,為拋物線上的兩個(gè)動點(diǎn)(異于點(diǎn)),且,求點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測呈陽性的概率均為()且相互獨(dú)立,該家庭至少檢測了5個(gè)人才能確定為“感染高危戶”的概率為,當(dāng)時(shí),最大,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的焦距為2,且過點(diǎn).
(1)求橢圓C的方程;
(2)已知△BMN是橢圓C的內(nèi)接三角形,若坐標(biāo)原點(diǎn)O為△BMN的重心,求點(diǎn)O到直線MN距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com