【題目】在平面直角坐標(biāo)系中,已知曲線:(為參數(shù))和定點(diǎn),是曲線的左、右焦點(diǎn),以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同單位長(zhǎng)度建立極坐標(biāo)系.
(1)求直線的極坐標(biāo)方程;
(2)經(jīng)過(guò)點(diǎn)且與直線垂直的直線交曲線于兩點(diǎn),求的值.
【答案】(1) (2)
【解析】
(1)將曲線的參數(shù)方程化為普通方程,根據(jù)橢圓的性質(zhì)得出焦點(diǎn)坐標(biāo),由截距式寫出直線方程,再由,化為極坐標(biāo)方程;
(2)根據(jù)題意得出直線的參數(shù)方程,并代入橢圓方程,利用韋達(dá)定理以及直線參數(shù)方程參數(shù)的幾何意義,得出的值.
(1)曲線:(為參數(shù)),可化為
焦點(diǎn)為和.
經(jīng)過(guò)和的直線方程為,即.
又,,
所以直線的極坐標(biāo)方程為,即.
(2)由(1)知,直線的斜率為,
因?yàn)?/span>,所以直線的斜率為,即傾斜角為
所以直線的參數(shù)方程為(為參數(shù)),
代入曲線的方程,得,
即,.
因?yàn)辄c(diǎn)在點(diǎn)的兩側(cè),所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過(guò)且斜率為的直線與交于,兩點(diǎn),.
(1)求的方程;
(2)求過(guò)點(diǎn),且與的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐的頂點(diǎn)為,底面圓心為,半徑為.
(1)設(shè)圓錐的母線長(zhǎng)為,求圓錐的體積;
(2)設(shè),、是底面半徑,且,為線段的中點(diǎn),如圖.求異面直線與所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某山區(qū)小學(xué)有名四年級(jí)學(xué)生,將全體四年級(jí)學(xué)生隨機(jī)按編號(hào),并且按編號(hào)順序平均分成組.現(xiàn)要從中抽取名學(xué)生,各組內(nèi)抽取的編號(hào)按依次增加進(jìn)行系統(tǒng)抽樣.
(1)若抽出的一個(gè)號(hào)碼為,據(jù)此寫出所有被抽出學(xué)生的號(hào)碼;
(2)分別統(tǒng)計(jì)這名學(xué)生的數(shù)學(xué)成績(jī),獲得成績(jī)數(shù)據(jù)的莖葉圖如圖所示,求該樣本的方差.
(注:,方差)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有兩個(gè)不相等的實(shí)數(shù)根,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若存在,使得不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程恰有四個(gè)不同的實(shí)數(shù)根,當(dāng)函數(shù)時(shí),實(shí)數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體的棱長(zhǎng)為,點(diǎn)分別為棱的中點(diǎn),下列結(jié)論中,其中正確的個(gè)數(shù)是( )
①過(guò)三點(diǎn)作正方體的截面,所得截面為正六邊形;
②/平面;
③;
④異面直線與所成角的正切值為;
⑤四面體的體積等于
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com