【題目】如圖,在四棱錐中,底面為邊長為的正方形, , 分別為, 的中點.
(1)求證: 平面;
(2)若, 平面,求直線與平面所成角的大小.
【答案】(1)見解析;(2).
【解析】試題分析:(1)設(shè)的中點為,連接, ,根據(jù)三角形中位線定理可得,進而得四邊形為平行四邊形,從而,由線面平行的判定定理可得 平面;(2)由(1)知, ,因為平面,可得平面, ,可證明平面, , , 兩兩垂直,以為坐標原點,向量, , 的方向為軸, 軸, 軸的正方形建立如圖所示的空間直角坐標系,求出直線的方向向量與平面的法向量,利用空間向量夾角余弦公式可得直線與平面所成角的正弦值,從而可得結(jié)果.
試題解析:(1)設(shè)的中點為,連接, ,
則,而
∴∴四邊形為平行四邊形.
∴,而平面, 平面
∴平面;
(2)由(1)知, ,因為平面
所以平面,而, 平面
∴
∵, ,
∴平面, 平面
∴,而, ,所以平面
(注意:沒有證明出平面,直接運用這一結(jié)論的,后續(xù)過程不給分)
由題意, , , 兩兩垂直,以為坐標原點,向量, , 的方向為軸, 軸, 軸的正方形建立如圖所示的空間直角坐標系
在三角形中平面,而平面,知,而的中點為知,則, , , ,
, , 為平面的一個法向量.
設(shè)直線與平面所成角為,
所以直線與平面所成角為.
【方法點晴】本題主要考查線面平行的判定定理、直線和平面成的角的定義及求法,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
科目:高中數(shù)學 來源: 題型:
【題目】半期考試后,班長小王統(tǒng)計了50名同學的數(shù)學成績,繪制頻率分布直方圖如圖所示.
(1)根據(jù)頻率分布直方圖,估計這50名同學的數(shù)學成績的眾數(shù);
(2)用分層抽樣的方法從成績低于115的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學數(shù)學成績均在中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,正確的是( )
A.在中,,
B.在銳角中,不等式恒成立
C.在中,若,則必是等腰直角三角形
D.在中,若,,則必是等邊三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且.
(1)求實數(shù)的值,并指出函數(shù)的定義域;
(2)將函數(shù)圖象上的所有點向右平行移動1個單位得到函數(shù)的圖象,寫出函數(shù)的表達式;
(3)對于(2)中的,關(guān)于的函數(shù)在上的最小值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標平面內(nèi),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系.已知點、的極坐標分別為、,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標方程;
(2)若直線和曲線只有一個交點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018衡水金卷(二)】如圖,矩形中, 且, 交于點.
(I)若點的軌跡是曲線的一部分,曲線關(guān)于軸、軸、原點都對稱,求曲線的軌跡方程;
(II)過點作曲線的兩條互相垂直的弦,四邊形的面積為,探究是否為定值?若是,求出此定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過(2,5),(﹣2,1)兩點,并且圓心在直線yx上.
(1)求圓的標準方程;
(2)求圓上的點到直線3x﹣4y+23=0的最小距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com