12.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{x-1}(x>1)\\ sin\frac{πx}{2}(x≤1)\end{array}\right.$,則f[f(2)]=( 。
A.0B.1C.2D.$\sqrt{2}$

分析 直接利用分段函數(shù)求解函數(shù)值即可.

解答 解:函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{x-1}(x>1)\\ sin\frac{πx}{2}(x≤1)\end{array}\right.$,則f[f(2)]=$f[\sqrt{2-1}]=f(1)=sin\frac{π}{2}=1$,
故選:B.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{5}}}{3}$,定點(diǎn)M(2,0),橢圓短軸的端點(diǎn)是B1,B2,且MB1⊥MB2
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點(diǎn)M且斜率不為0的直線交橢圓C于A,B兩點(diǎn).試問x軸上是否存在定點(diǎn)P,使△APB內(nèi)切圓圓心的縱坐標(biāo)為定值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若函數(shù)f(x)=3x2-5x+a的兩個(gè)零點(diǎn)分別為x1,x2.且有-2<x1<0與1<x2<3,試求出a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.橢圓kx2+8ky2=8的一個(gè)焦點(diǎn)為$(\sqrt{21},0)$,則k的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用秦九韶算法求多項(xiàng)式f(x)=x6-5x5+6x4+x2+0.3x+2,當(dāng)x=-2時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3+S6=S9,則公比q=( 。
A.1或-1B.1C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$|{\overrightarrow a}|=4$,$|{\overrightarrow b}|=3$,($(2\overrightarrow a+\overrightarrow b)•(2\overrightarrow a-3\overrightarrow b)=61$,
(1)求$\overrightarrow a$與$\overrightarrow b$的夾角
(2)求$|{\overrightarrow a+\overrightarrow b}|$,$|{\overrightarrow a-2\overrightarrow b}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點(diǎn).
(Ⅰ)求證:平面FGH∥平面PDE;
(Ⅱ)求證:平面FGH⊥平面AEB;
(Ⅲ)在線段PC上是否存在一點(diǎn)M,使PB⊥平面EFM?若存在,求出線段PM的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知等差數(shù)列{an}滿足a2=3,S4=14,若數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Sn=$\frac{1007}{2016}$,則n=2014.

查看答案和解析>>

同步練習(xí)冊(cè)答案