解關(guān)于x不等式ax2+x+1<0.
考點(diǎn):一元二次不等式的解法
專題:分類討論,不等式的解法及應(yīng)用
分析:討論a的取值,求對應(yīng)的不等式ax2+x+1<0的解集即可.
解答: 解:(1)當(dāng)a<0時(shí),∵△=1-4a>0,
∴不等式ax2+x+1<0解集為{x|x<
-1+
1-4a
2a
,或x>
-1-
1-4a
2a
};
(2)當(dāng)a=0時(shí),不等式為x+1<0,解集為{x|x<-1};
(3)當(dāng)a>0時(shí),∵△=1-4a>0,∴a<
1
4

∴若0<a<
1
4
,則不等式為的解集為{x|
-1-
1-4a
2a
<x<
-1+
1-4a
2a
};
若a≥
1
4
,則不等式的解集是∅.
點(diǎn)評:本題考查了求含有字母系數(shù)的不等式的解集問題,解題時(shí)應(yīng)對字母系數(shù)進(jìn)行討論,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,俯視圖是一個(gè)等腰直角三角形,則該幾何體的外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2},B={b1,b2},C={c},a1,a2,b1,b2,c∈{1,2,3,4,5,6,7,8,9},且三個(gè)集合中的元素各不相同,現(xiàn)將a1、a2、b1、b2、c排成一個(gè)5位數(shù),則同一集合中的元素不相鄰的概率是( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

變量x、y滿足
x-4y+3≤0
3x+5y-25≤0
x≥1
,Z=
y
x
,則Z的最小值為(  )
A、
22
5
B、
2
5
C、1
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(π+α)=(  )
A、cosαB、-cosα
C、sinαD、-sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某汽車公司有兩家裝配廠,生產(chǎn)甲、乙兩種不同型的汽車,若A廠每小時(shí)可完成1輛甲型車和2輛乙型車;B廠每小時(shí)可完成3輛甲型車和1輛乙型車.今欲制造40輛甲型車和40輛乙型車,問這兩家工廠各工作幾小時(shí),才能使所費(fèi)的總工作時(shí)數(shù)最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上任意一點(diǎn)P到兩定點(diǎn)F1(-1,0)與F2(1,0)的距離之和為4.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)曲線C與x軸負(fù)半軸交點(diǎn)為A,過點(diǎn)M(-4,0)作斜率為k的直線l交曲線C于B、C兩點(diǎn)(B在M、C之間),N為BC中點(diǎn).
(ⅰ)證明:k•kON為定值;
(ⅱ)是否存在實(shí)數(shù)k,使得F1N⊥AC?如果存在,求直線l的方程,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個(gè)對數(shù)函數(shù):①y=lgx,②y=lg(-x),③y=lgx-2,④y=lg(-x)-lg2,則:
(1)對數(shù)函數(shù)①與②關(guān)于什么軸對稱?
(2)對數(shù)函數(shù)①經(jīng)過怎樣的變化得到③?
(3)對數(shù)函數(shù)②經(jīng)過怎樣的變化得到④?
(4)對數(shù)函數(shù)③④是否對稱?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx-1,a∈(0,4),b∈R.
(1)若b<0,且當(dāng)x∈[-
1
a
,0]時(shí),f(x)∈[-
3
a
,0],求a,b的值;
(2)是否存在實(shí)數(shù)a,b,使f(x)恰有一個(gè)零點(diǎn)x0∈(1,2),若存在,請給出一對實(shí)數(shù)a,b;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案