已知
a+2i
i
=b-i(a,b∈R),其中i為虛數(shù)單位,則a+b=
 
考點(diǎn):復(fù)數(shù)的基本概念
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和復(fù)數(shù)相等即可得出.
解答: 解:∵
a+2i
i
=b-i(a,b∈R),∴a+2i=bi+1,∴
a=1
b=2

∴a+b=3.
故答案為:3.
點(diǎn)評(píng):本題查克拉復(fù)數(shù)的運(yùn)算法則和復(fù)數(shù)相等,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
AB
=(cos23°,sin23°),
AC
=(2cos68°,2sin68°),則△ABC的面積為( 。
A、2
2
B、
2
2
C、
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于事件A,P(A)表示事件A發(fā)生的概率.則下列命題正確的是( 。
A、如果P(A∪B)=P(A)+P(B),那么事件A、B互斥
B、如果P(A∪B)=P(A)+P(B)=1,那么事件A、B對(duì)立
C、P(A∪B)=P(A)+P(B)=1是事件A、B對(duì)立的充要條件
D、事件A、B互斥是P(A∪B)=P(A)+P(B)的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知中心在坐標(biāo)原點(diǎn)且關(guān)于坐標(biāo)軸對(duì)稱(chēng)的橢圓C1的焦點(diǎn)在拋物線(xiàn)C2:y2=-4x的準(zhǔn)線(xiàn)上,且橢圓C1的離心率為
1
2

(1)求橢圓C1的方程,
(2)若直線(xiàn)l與橢圓C1相切于第一象限內(nèi),且直線(xiàn)l與兩坐標(biāo)軸分別相交與A,B兩點(diǎn),試探究當(dāng)三角形AOB的面積最小值時(shí),拋物線(xiàn)C2上是否存在點(diǎn)到直線(xiàn)l的距離為
2
42
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-3,1)是橢圓
x2
36
+
y2
4
=1內(nèi)的一點(diǎn),點(diǎn)M為橢圓上的任意一點(diǎn)(除短軸端點(diǎn)外),O為原點(diǎn).過(guò)此點(diǎn)A作直線(xiàn)l與橢圓相交于C、D兩點(diǎn),且A點(diǎn)恰好為弦CD的中點(diǎn).再把點(diǎn)M與短軸兩端點(diǎn)B1、B2連接起來(lái)并延長(zhǎng),分別交x軸于P、Q兩點(diǎn).
(1)求弦CD的長(zhǎng)度;
(2)求證:|OP|•|OQ|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解禿頂與患心臟病是否有關(guān),某校學(xué)生隨機(jī)調(diào)查了醫(yī)院中因患心臟病而住院45名男性病人;另外不是因患心臟病而住院55名男性病人,得到相應(yīng)的2×2列聯(lián)表:
患心臟病不患心臟病
禿頂155
不禿頂3050
2×2列聯(lián)表
(1)根據(jù)2×2列聯(lián)表補(bǔ)全相應(yīng)的等高條形圖(用陰影表示);
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為禿頂與患心臟病有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)Sn滿(mǎn)足2SnSn-1=Sn-1-Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
Sn
2n+1
,求數(shù)列{bn}的前n項(xiàng)和Tn;
(Ⅲ)是否存在自然數(shù)m,使得對(duì)任意n∈N*,都有Tn
1
4
(m-519)成立?若存在,求出m的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線(xiàn)C:x2=2py(p>0)的焦點(diǎn)F作直線(xiàn)l與拋物線(xiàn)C交于A,B兩點(diǎn),當(dāng)點(diǎn)A的縱坐標(biāo)為1時(shí),|AF|=2.
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)若直線(xiàn)l的斜率為2,問(wèn)拋物線(xiàn)C上是否存在一點(diǎn)M,使得MA⊥MB?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠對(duì)某產(chǎn)品的產(chǎn)量與成本的資料分析后有如下數(shù)據(jù):
產(chǎn)量x千件2356
成本y萬(wàn)元78912
(1)畫(huà)出散點(diǎn)圖.
(2)求成本y與產(chǎn)量x之間的線(xiàn)性回歸方程
y
=bx+a.(結(jié)果保留兩位小數(shù))
參考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
y
-b
.
x

查看答案和解析>>

同步練習(xí)冊(cè)答案