已知函數(shù)
(Ⅰ)若為的極值點,求實數(shù)的值;
(Ⅱ)若在上為增函數(shù),求實數(shù)的取值范圍;
(Ⅲ)當(dāng)時,方程有實根,求實數(shù)的最大值.
(Ⅰ)(Ⅱ)(Ⅲ)0
解析試題分析:(I)……2分
因為為的極值點,所以,即,
解得。經(jīng)檢驗,合題意……4分(沒有寫經(jīng)檢驗的減1分)
(II)因為函數(shù)在上為增函數(shù),所以
在上恒成立。
?當(dāng)時,在上恒成立,所以在上為增函數(shù),故 符合題意。 ……………………6分
?當(dāng)時,由函數(shù)的定義域可知,必須有對恒成立,
故只能,所以在上恒成立。
令函數(shù),其對稱軸為,
因為,所以,
要使在上恒成立,
只要即可,即,
所以。
因為,所以。
綜上所述,a的取值范圍為。………8分
(Ⅲ)當(dāng)時,方程可化為。
問題轉(zhuǎn)化為在上有解,即求函數(shù)的值域。
因為函數(shù),令函數(shù),………10分
則,
所以當(dāng)時,,從而函數(shù)在上為增函數(shù),
當(dāng)時,,從而函數(shù)在上為減函數(shù),
因此。
而,所以,因此當(dāng)時,b取得最大值0. ………12分
考點:函數(shù)導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)求極值最值
點評:本題中的不等式恒成立或方程有實根轉(zhuǎn)化為求構(gòu)造的新函數(shù)的最值問題,這是函數(shù)題中最常用的轉(zhuǎn)化方法
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù),,記。
(Ⅰ)判斷的奇偶性,并證明;
(Ⅱ)對任意,都存在,使得,.若,求實數(shù)的值;
(Ⅲ)若對于一切恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是定義在R上的奇函數(shù),且對任意,當(dāng)時,都有.
(1)求證:在R上為增函數(shù).
(2)若對任意恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)探究函數(shù)的最小值,并確定取得最小值時x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且在處取得極值.
(1)求的值;
(2)若當(dāng)時,恒成立,求的取值范圍;
(3)對任意的是否恒成立?如果成立,給出證明,如果不成立,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)定義域為,且.
設(shè)點是函數(shù)圖像上的任意一點,過點分別作直線和軸的垂線,垂足分別為.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設(shè)點的橫坐標(biāo),求點的坐標(biāo)(用的代數(shù)式表示);(7分)
(3)設(shè)為坐標(biāo)原點,求四邊形面積的最小值.(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題9分)已知函數(shù)。
(Ⅰ)若在上的最小值是,試解不等式;
(Ⅱ)若在上單調(diào)遞增,試求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)(1)已知函數(shù),問方程在區(qū)間[-1,0]內(nèi)是否有
解,為什么?
(2)若方程在(0,1)內(nèi)恰有一解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com