【題目】已知函數(shù) 是定義在(﹣1,1)上是奇函數(shù),且
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.

【答案】
(1)解:由題意可知f(﹣x)=﹣f(x),

,∴b=0.

,∵ ,∴a=1,


(2)解:f(x)在(﹣1,1)上遞增,

證明如下:

設(shè)﹣1<x1<x2<1,

則:f(x1)﹣f(x2)=

∵﹣1<x1<x2<1,

∴x1﹣x2<0,∴1﹣x1x2>0,

,

所以f(x1)﹣f(x2)<0,

即f(x1)<f(x2).

∴f(x)在(﹣1,1)上是增函數(shù)


【解析】(1)根據(jù)函數(shù)的奇偶性求出b的值,根據(jù) 求出a的值,從而求出f(x)的解析式即可;(2)根據(jù)函數(shù)單調(diào)性的定義證明即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年的4月23日是“世界讀書日”,某校研究性學(xué)習(xí)小組為了解本校學(xué)生的閱讀情況,隨機(jī)調(diào)查了本校200名學(xué)生在這一天的閱讀時(shí)間 (單位:分鐘),將樣本數(shù)據(jù)整理后繪制成如圖的樣本頻率分布直方圖.

(1)求的值;

(2)試估計(jì)該學(xué)校所有學(xué)生在這一天的平均閱讀時(shí)間;

(3)若用分層抽樣的方法從這200名學(xué)生中,抽出25人參加交流會(huì),則閱讀時(shí)間為, 的兩組中各抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市文化部門為了了解本市市民對(duì)當(dāng)?shù)氐胤綉蚯欠裣矏,?5-65歲的人群中隨機(jī)抽樣了人,得到如下的統(tǒng)計(jì)表和頻率分布直方圖.

(1)寫出其中的、的值;

(2)若從第1,2,3組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?

(3)在(2)抽取的6人中隨機(jī)抽取2人,求這2人都是第3組的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若不存在極值點(diǎn),求的取值范圍;

(2)若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面 側(cè)面1, ,

(Ⅰ)求證:

(Ⅱ)求三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)的切線方程;

(2)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),試討論內(nèi)的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)質(zhì)地均勻的正四面體的四個(gè)面上分別標(biāo)示著數(shù)字1,2,3,4,一個(gè)質(zhì)地均勻的骰子(正方體)的六個(gè)面上分別標(biāo)示數(shù)字1,2,3,4,5,6,先后拋擲一次正四面體和骰子.

(1)列舉出全部基本事件;

(2)求被壓在底部的兩個(gè)數(shù)字之和小于5的概率;

(3)求正四面體上被壓住的數(shù)字不小于骰子上被壓住的數(shù)字的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (a>0,a≠1).
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并給出證明;
(3)當(dāng)x∈(n,a﹣2)時(shí),函數(shù)f(x)的值域是(1,+∞),求實(shí)數(shù)a與n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與軸的正半軸重合,曲線極坐標(biāo)方程為.

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)已知直線的參數(shù)方程為為參數(shù)),直線交曲線兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案