【題目】如圖,三棱錐PABC中,PC⊥平面ABC,PCAC=2,ABBCDPB上一點,且CD⊥平面PAB

(1)求證:AB⊥平面PCB;

(2)求二面角CPAB的大小的余弦值.

【答案】(1)詳見解析;(2).

【解析】

1)由題設(shè)條件,易證得PCABCDAB,故可由線面垂直的判定定理證得AB⊥平面PCB;(2)由圖形知,取AP的中點O,連接CO、DO,可證得∠COD為二面角CPAB的平面角,在△CDO中求∠COD即可.

(1)證明:∵PC⊥平面ABC,AB平面ABC,

PCAB

CD⊥平面PAB,AB平面PAB

CDAB.又PCCDC,∴AB⊥平面PCB

(2)取AP的中點O,連接CO、DO

PCAC=2,∴COPA,CO,

CD⊥平面PAB,由三垂線定理的逆定理,得DOPA

∴∠COD為二面角CPAB的平面角.

由(1)AB⊥平面PCB,∴ABBC

又∵ABBC,AC=2,求得BC

PB,CD

cosCOD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數(shù)據(jù)進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.

(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費x的回歸方程;

(2)已知這種產(chǎn)品的年利潤zx,y的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問題:

①當(dāng)年宣傳費為10萬元時,年銷售量及年利潤的預(yù)報值是多少?

②估算該公司應(yīng)該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.

附:回歸方程中的斜率和截距的最小二乘估計公式分別為

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰中,,,點,,為線段的四等分點,且.現(xiàn)沿,,折疊成圖2所示的幾何體,使.

(圖1

(圖2

1)證明:平面;

2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標系中,已知曲線的方程為,曲線的方程為.以極點為原點,極軸為軸正半軸建立直角坐標系

(1)求曲線,的直角坐標方程;

(2)若曲線軸相交于點,與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20171月至201912月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是( 。

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30萬人

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為正方形的四棱錐中,平面,點分別在棱,上,且滿足,.

(1)證明:平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且,圓的方程是.

1)求雙曲線的方程;

2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;

3)過圓上任意一點作圓的切線交雙曲線兩點,中點為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個零點,有一個極值點

(1)求實數(shù)a的取值范圍;

(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對年利率為的連續(xù)復(fù)利,要在年后達到本利和,則現(xiàn)在投資值為,是自然對數(shù)的底數(shù).如果項目的投資年利率為的連續(xù)復(fù)利.

(1)現(xiàn)在投資5萬元,寫出滿年的本利和,并求滿10年的本利和;(精確到0.1萬元)

(2)一個家庭為剛出生的孩子設(shè)立創(chuàng)業(yè)基金,若每年初一次性給項目投資2萬元,那么,至少滿多少年基金共有本利和超過一百萬元?(精確到1年)

查看答案和解析>>

同步練習(xí)冊答案