【題目】.如圖,在三棱錐V-ABC,VO⊥平面ABCO∈CD,VA=VB,AD=BD則下列結(jié)論中不一定成立的是 (  )

A. AC=BC

B. VC⊥VD

C. AB⊥VC

D. SVCD·AB=SABC·VO

【答案】B

【解析】因為VA=VB,AD=BD,

所以VD⊥AB.因為VO⊥平面ABC,

AB平面ABC,所以VO⊥AB.

又VO∩VD=V,VO平面VCD,VD平面VCD,

所以AB⊥平面VCD,

又CD平面VCD,VC平面VCD,

所以AB⊥VC,AB⊥CD.

又AD=BD,所以AC=BC(線段垂直平分線的性質(zhì)),因為VO⊥平面ABC,

所以VV-ABC=S△ABC·VO.

因為AB⊥平面VCD,

所以VV-ABC=VB-VCD+VA-VCD

=S△VCD·BD+S△VCD·AD

=S△VCD·(BD+AD)

=S△VCD·AB,

所以S△ABC·VO=S△VCD·AB,

即S△VCD·AB=S△ABC·VO.綜上知,A,C,D正確.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖:三棱柱的所有棱長均相等,,的中點.

(1)求證:平面⊥平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“菊花”型煙花是最壯觀的煙花之一,制造時一般是期望在它達到最高點時爆裂.通過研究,發(fā)現(xiàn)該型煙花爆裂時距地面的高度(單位:米)與時間(單位:秒)存在函數(shù)關(guān)系,并得到相關(guān)數(shù)據(jù)如表:

時間

1

高度

(1)根據(jù)表中數(shù)據(jù),從下列函數(shù)中選取一個函數(shù)描述該型煙花爆裂時距地面的高度與時間的變化關(guān)系: , , ,確定此函數(shù)解析式并簡單說明理由;

(2)利用你選取的函數(shù),判斷煙花爆裂的最佳時刻,并求此時煙花距地面的高度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐ABCD中,AB⊥平面BCD,CD⊥BD .

1)求證:CD⊥平面ABD

2)若ABBDCD1,MAD中點,求三棱錐AMBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,求證:函數(shù)有且只有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)正項數(shù)列的前項和,且滿足.

(Ⅰ)計算的值,猜想的通項公式,并證明你的結(jié)論;

(Ⅱ)設(shè)是數(shù)列的前項和,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且的離心率為.

(1)求的方程;

(2)過的頂點作兩條互相垂直的直線與橢圓分別相交于兩點.若的角平分線方程為,求的面積及直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球3次均未命中的概率為,甲投球未命中的概率恰是乙投球未命中的概率的2倍. 

(Ⅰ)求乙投球的命中率

(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中, , ,平面平面,四邊形是矩形, ,點在線段上,且

(1)求證: 平面

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習冊答案