【題目】已知函數(shù),函數(shù).

(1)若的定義域為,求實數(shù)的取值范圍;

(2)當(dāng)時,求函數(shù)的最小值;

(3)是否存在非負實數(shù),使得函數(shù)的定義域為,值域為,若存在,求出的值;若不存在,則說明理由.

【答案】(1)(2)(3)

【解析】試題分析:(1)由恒成立,分m=0與二次函數(shù)討論,根據(jù)二次函數(shù)性質(zhì)得判別式小于零,解得實數(shù)的取值范圍;(2)先求值域得函數(shù)定義域,再根據(jù)對稱軸與定義區(qū)間位置關(guān)系,討論函數(shù)最小值取法(3)先化簡函數(shù),再根據(jù)二次函數(shù)單調(diào)性確定值域取法,解方程組可得的值

試題解析:解:(1)

2

,則

對稱軸為,當(dāng)時, 時, ;

當(dāng)時, 時, ;

當(dāng)時, 時, .

綜上所述,

3,假設(shè)存在,由題意,知解得存在,使得函數(shù)定義域為,值域為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A是實數(shù)集,滿足若aA,則A,a≠1,且1A.

(1)若2∈A,則集合A中至少還有幾個元素?求出這幾個元素.

(2)集合A中能否只含有一個元素?請說明理由.

(3)若aA,證明:1-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4;坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點, 軸正半軸為極軸的極坐標中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標方程.

(Ⅱ)求曲線上的點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是長方形,側(cè)棱底面,且,過DF,過FPCE.

)證明:平面PBC;

)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D的中點,AC平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長;

(2)求B1D與平面ABB1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加.現(xiàn)有來自甲協(xié)會的運動員名,其中種子選手名;乙協(xié)會的運動員名,其中種子選手名.從這名運動員中隨機選擇人參加比賽.

(1)設(shè)為事件“選出的人中恰有名種子選手,且這名種子選手來自同一個協(xié)會”求事件發(fā)生的概率;

(2)設(shè)為選出的人中種子選手的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱ABCD-A1B1C1D1已知平面AA1C1C⊥平面ABCD,AB=BC=CA=AD=CD=1.

(1)求證BD⊥AA1.

(2)在棱BC上取一點E,使得AE∥平面DCC1D1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù),其中 是新樣式單車的月產(chǎn)量(單位:件),利潤總收益總成本.

(1)試將自行車廠的利潤元表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱ABCA1B1C1中,側(cè)面AA1C1C是菱形,AC1A1C交于點O,點EAB的中點.

(1)求證:OE∥平面BCC1B1.

(2)AC1A1B,求證:AC1BC.

查看答案和解析>>

同步練習(xí)冊答案