17.已知函數(shù)f(x)=a(x-1)2-4lnx,a≥0.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若對一切x∈[2,e],f(x)≤-1恒成立,求實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)確定函數(shù)的定義域,當(dāng)a=1時(shí),求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù)求f(x)的單調(diào)區(qū)間;
(Ⅱ)令g(x)=a(x-1)2-4lnx+1,求出g(x)max=g(e)=a(e-1)2-4lne+1=a(e-1)2-3,利用對一切x∈[2,e],f(x)≤-1恒成立,求實(shí)數(shù)a的取值范圍.

解答 解:(Ⅰ)函數(shù)的定義域?yàn)椋?,+∞).
當(dāng)a=1時(shí),f(x)=(x-1)2-4lnx,
∴f′(x)=2(x-1)-$\frac{4}{x}$=$\frac{2(x-2)(x+1)}{x}$
由f′(x)>0可得x>2.f′(x)<0可得0<x<2,
∴f(x)的單調(diào)增區(qū)間是(2,+∞),單調(diào)減區(qū)間是(0,2);
(Ⅱ)令g(x)=a(x-1)2-4lnx+1,則x∈[2,e],g′(x)=2a(x-1)-$\frac{4}{x}$>0,
∴g(x)=a(x-1)2-4lnx+1在x∈[2,e]上單調(diào)遞增,
∴g(x)max=g(e)=a(e-1)2-4lne+1=a(e-1)2-3,
∵對一切x∈[2,e],f(x)≤-1恒成立,
∴a(e-1)2-3≤0
∴a≤$\frac{3}{(e-1)^{2}}$.

點(diǎn)評 本題考查導(dǎo)數(shù)知識的綜合運(yùn)用,考查函數(shù)的單調(diào)性,考查恒成立問題,正確求導(dǎo)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體檢表,并得到如圖直方圖:
(Ⅰ)若直方圖中前三組的頻數(shù)成等比數(shù)列,后四組的頻數(shù)成等差數(shù)列,試估計(jì)全年級視力在5.0以下的人數(shù);
(Ⅱ)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到如下數(shù)據(jù):
是否近視
年級名次
1~50951~1000
近視4132
不近視918
根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?
(Ⅲ)在(Ⅱ)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了9人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這9人中任取3人,記名次在1~50名的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡:$\frac{sin(α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)co{s}^{2}(π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2-2x+b
(1)若b=1,函數(shù)h(x)=ln$\frac{f(x)}{x}$(x>0)在[2,+∞)上遞增,求實(shí)數(shù)a的范圍;
(2)若a=-1,b=0,定義域?yàn)镽的函數(shù)g(x)=$\left\{{\begin{array}{l}{|{lgx}|(x>0)}\\{f(x)(x≤0)}\end{array}}$,當(dāng)g(x)<1時(shí),討論關(guān)于C的方程2g2(x)+2mg(x)+1=0的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-6x-1.
(1)求函數(shù)f(x)在x=2處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^3}+{x^2},x<1\\ alnx,x≥1\end{array}$
(1)求f(x)在區(qū)間[-1,1)上的最大值;
(2)對任意給定的正實(shí)數(shù)a,曲線y=f(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=ax-$\frac{1}{x}$-(a+1)lnx,(a≥0),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x+alnx;
(1)當(dāng)a=-1時(shí),求f(x)的單調(diào)區(qū)間;
(2)求f(x)的極值;
(3)若函數(shù)f(x)沒有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB.
(1)求AD1與面BB1D1D所成角的正弦值;
(2)點(diǎn)E在側(cè)棱AA1上,若二面角E-BD-C1的余弦值為$\frac{{\sqrt{3}}}{3}$,求$\frac{AE}{{A{A_1}}}$的值.

查看答案和解析>>

同步練習(xí)冊答案