是否近視 年級名次 | 1~50 | 951~1000 |
近視 | 41 | 32 |
不近視 | 9 | 18 |
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
分析 (Ⅰ)利用直方圖中前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,求出視力在5.0以下的頻率,即可估計(jì)全年級視力在5.0以下的人數(shù);
(Ⅱ)求出K2,與臨界值比較,即可得出結(jié)論;
(Ⅲ)依題意9人中年級名次在1~50名和951~1000名分別有3人和6人,X可取0,1,2,3,求出相應(yīng)的概率,即可求X的分布列和數(shù)學(xué)期望.
解答 解:(Ⅰ)設(shè)各組的頻率為fi(i=1,2,3,4,5,6),
由前三組的頻數(shù)成等比數(shù)列,后四組的頻數(shù)成等差數(shù)列,可得前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,故f1=0.15×0.2=0.03,f2=0.45×0.2=0.09,${f_3}=\frac{f_2^2}{f_1}=0.27$…(1分)
所以由$\frac{{({f_3}+{f_6})•4}}{2}=1-(0.03+0.09)$得f6=0.17,…(2分)
所以視力在5.0以下的頻率為1-0.17=0.83,…(3分)
故全年級視力在5.0以下的人數(shù)約為1000×0.83=830…(4分)
(Ⅱ)${k^2}=\frac{{100×{{(41×18-32×9)}^2}}}{50×50×73×27}=\frac{300}{73}≈4.110>3.841$…(6分)
因此在犯錯誤的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系.…(7分)
(Ⅲ)依題意9人中年級名次在1~50名和951~1000名分別有3人和6人,…(8分)
X可取0,1,2,3$P(X=0)=\frac{C_6^3}{C_9^3}=\frac{20}{84}$,$P(X=1)=\frac{C_6^2C_3^1}{C_9^3}=\frac{45}{84}$,$P(X=2)=\frac{C_6^1C_3^2}{C_9^3}=\frac{18}{84}$,$P(X=3)=\frac{C_3^3}{C_9^3}=\frac{1}{84}$
X的分布列為
X | 0 | 1 | 2 | 3 |
P | $\frac{20}{84}$ | $\frac{45}{84}$ | $\frac{18}{84}$ | $\frac{1}{84}$ |
點(diǎn)評 本題考查直方圖,考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查求X的分布列和數(shù)學(xué)期望,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,3] | B. | [0,$\frac{3}{2}$] | C. | [-$\frac{3}{2}$,0] | D. | [-3,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{5}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-18,18] | B. | [-16,16] | C. | [-12,12] | D. | [-8,8] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com