【題目】2019年籃球世界杯在中國(guó)舉行,中國(guó)男籃由于主場(chǎng)作戰(zhàn)而備受觀眾矚目.為了調(diào)查國(guó)人對(duì)中國(guó)男籃能否進(jìn)入十六強(qiáng)持有的態(tài)度,調(diào)查人員隨機(jī)抽取了男性觀眾與女性觀眾各100名進(jìn)行調(diào)查,所得情況如下表所示:

男性觀眾

女性觀眾

認(rèn)為中國(guó)男籃能夠進(jìn)入十六強(qiáng)

60

認(rèn)為中國(guó)男籃不能進(jìn)入十六強(qiáng)

若在被抽查的200名觀眾中隨機(jī)抽取1人,抽到認(rèn)為中國(guó)男籃不能進(jìn)入十六強(qiáng)的女性觀眾的概率為.

1)完善上述表格;

2)是否有99%的把握認(rèn)為性別與對(duì)中國(guó)男籃能否進(jìn)入十六強(qiáng)持有的態(tài)度有關(guān)?

附:,其中.

【答案】1)表格見解析;(2)沒有

【解析】

1)由概率可求出認(rèn)為中國(guó)男籃不能進(jìn)入十六強(qiáng)的女性觀眾的人數(shù),結(jié)合男女各100人,即可求出表中所有數(shù)據(jù).

2)代入求出的觀測(cè)值,進(jìn)而可判斷.

1)依題意,得認(rèn)為中國(guó)男籃不能進(jìn)入十六強(qiáng)的女性觀眾人數(shù)為.

完善表格如下表所示:

男性觀眾

女性觀眾

認(rèn)為中國(guó)男籃能夠進(jìn)入十六強(qiáng)

60

50

認(rèn)為中國(guó)男籃不能進(jìn)入十六強(qiáng)

40

50

2)本次試驗(yàn)中,的觀測(cè)值.

所以沒有99%的把握認(rèn)為性別與對(duì)中國(guó)男籃能否進(jìn)入十六強(qiáng)持有的態(tài)度有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四面體是側(cè)棱與底面邊長(zhǎng)都相等的正三棱錐,它的對(duì)棱互相垂直.有一個(gè)如圖所示的正四面體,EF,G分別是棱ABBC,CD的中點(diǎn).

1)求證:EFG;

2)求異面直線EGAC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,數(shù)列滿足條件:對(duì)于,且,并有關(guān)系式:,又設(shè)數(shù)列滿足(,).

1)求證數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)試問數(shù)列是否為等差數(shù)列,如果是,請(qǐng)寫出公差,如果不是,說明理由;

3)若,記,,設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,若對(duì)任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的有_______.

①回歸直線恒過點(diǎn),且至少過一個(gè)樣本點(diǎn);

②根據(jù)列列聯(lián)表中的數(shù)據(jù)計(jì)算得出,而,則有99%的把握認(rèn)為兩個(gè)分類變量有關(guān)系;

是用來判斷兩個(gè)分類變量是否相關(guān)的隨機(jī)變量,當(dāng)的值很小時(shí)可以推斷兩個(gè)變量不相關(guān);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》卷五《商功》中有如下敘述今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈“芻甍”指的是底面為矩形的對(duì)稱型屋脊?fàn)畹膸缀误w,“下廣三丈”是指底面矩形寬三丈,“袤四丈”是指底面矩形長(zhǎng)四丈,“上袤二丈”是指脊長(zhǎng)二丈,“無寬”是指脊無寬度,“高一丈”是指幾何體的高為一丈現(xiàn)有一個(gè)芻甍如圖所示,下廣三丈,袤四丈,上袤三丈,無廣,高二丈,則該芻甍的外接球的表面積為_______________平方丈

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某疾病控制中心為了研究某種病毒的抗體,將這種病毒感染源放人含40個(gè)小白鼠的封閉容器中進(jìn)行感染,未感染病毒的小白鼠說明已經(jīng)產(chǎn)生了抗體,已知小白鼠對(duì)這種病毒產(chǎn)生抗體的概率為.現(xiàn)對(duì)40個(gè)小白鼠進(jìn)行抽血化驗(yàn),為了檢驗(yàn)出所有產(chǎn)生該種病毒抗體的小白鼠,設(shè)計(jì)了下面的檢測(cè)方案:按,且40的約數(shù))個(gè)小白鼠平均分組,并將抽到的同組的個(gè)小白鼠每個(gè)抽取的一半血混合在一起化驗(yàn),若發(fā)現(xiàn)該病毒抗體,則對(duì)該組的個(gè)小白鼠抽取的另一半血逐一化驗(yàn),記為某組中含有抗體的小白鼠的個(gè)數(shù).

1)若,求的分布列和數(shù)學(xué)期望.

2)為減少化驗(yàn)次數(shù)的期望值,試確定的大小.

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生活中萬事萬物都是有關(guān)聯(lián)的,所有直線中有關(guān)聯(lián)直線,所有點(diǎn)中也有相關(guān)點(diǎn),現(xiàn)在定義:平面內(nèi)如果兩點(diǎn)都在函數(shù)的圖像上,而且滿足、兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)(、)是函數(shù)的“相關(guān)對(duì)稱點(diǎn)對(duì)”(注明:點(diǎn)對(duì)()與(、)看成同一個(gè)“相關(guān)對(duì)稱點(diǎn)對(duì)”).已知函數(shù),則這個(gè)函數(shù)的“相關(guān)對(duì)稱點(diǎn)對(duì)”有(

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直三棱柱中,,平面,DAC的中點(diǎn)

求證:平面

求證:平面

查看答案和解析>>

同步練習(xí)冊(cè)答案