11.已知f(x)=$\frac{1-x}{1+x}$,x∈(-1,1).求證:
(1)f($\frac{1}{a}$)=-f(a)(a≠0);
(2)lgf(-a)=-lgf(a).

分析 (1)由f(x)的解析式,運(yùn)用代入法,化簡(jiǎn)即可得證;
(2)由f(x)的解析式,結(jié)合對(duì)數(shù)的運(yùn)算法則,即可得證.

解答 證明:(1)f(x)=$\frac{1-x}{1+x}$,x∈(-1,1),
可得f($\frac{1}{a}$)=$\frac{1-\frac{1}{a}}{1+\frac{1}{a}}$=$\frac{a-1}{a+1}$=-$\frac{1-a}{1+a}$=-f(a)(a≠0);
(2)由f(x)=$\frac{1-x}{1+x}$,x∈(-1,1),
可得lgf(-a)=lg$\frac{1+a}{1-a}$=-lg$\frac{1-a}{1+a}$=-lgf(a).
則lgf(-a)=-lgf(a).

點(diǎn)評(píng) 本題考查對(duì)數(shù)的運(yùn)算性質(zhì)的運(yùn)用:證明恒等式,考查推理和運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(1)若橢圓C的離心率為$\frac{1}{2}$,右準(zhǔn)線l的方程為x=4,求橢圓方程;
(2)若橢圓C的下頂點(diǎn)為B,P為橢圓C上任意一點(diǎn),當(dāng)P是橢圓C的上頂點(diǎn)時(shí),PB最長(zhǎng),求橢圓C的離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)F1、F2為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn),過(guò)F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若∠PF1F2=60°,則橢圓的離心率是2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=ax3-x2+5x,a∈R.
(1)當(dāng)0<a≤$\frac{1}{15}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)φ(x)=($\frac{1}{3}-a$)x3+2x2-(2a+5)x,并且函數(shù)g(x)=f(x)+φ(x)在[-5,-3]上是增函數(shù),求a的取值范圍;
(3)若a≠0,且f(x)在區(qū)間(5,+∞)的一個(gè)子區(qū)間上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.二次函數(shù)f(x)=ax2+bx+c的導(dǎo)函數(shù)為f′(x),已知f′(0)>0,且對(duì)任意實(shí)數(shù)x,有f(x)≥0,則$\frac{f(1)}{f′(0)}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.直線3x+$\sqrt{3}$y-1=0的傾斜角為( 。
A.60°B.30°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)f(x)=cosx-x的零點(diǎn)在區(qū)間(k-1,k)(k∈Z)內(nèi),則k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.($\sqrt{x}$-2)7展開(kāi)式中所有項(xiàng)的系數(shù)的和為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|≥1,|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=3,則|$\overrightarrow{c}$|的最小值是1,最大值是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案