判斷函數(shù)f(x)=在定義域上的單調(diào)性.
f(x)=在[1,+∞)上為增函數(shù),在(-∞,-1]上為減函數(shù)
函數(shù)的定義域?yàn)閧x|x≤-1或x≥1},
則f(x)= ,
可分解成兩個(gè)簡(jiǎn)單函數(shù).
f(x)= =x2-1的形式.當(dāng)x≥1時(shí),u(x)為增函數(shù),為增函數(shù).
∴f(x)=在[1,+∞)上為增函數(shù).當(dāng)x≤-1時(shí),u(x)為減函數(shù),為減函數(shù),
∴f(x)=在(-∞,-1]上為減函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:函數(shù)上是奇函數(shù),而且在上是增函數(shù),
證明:上也是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=f(x)對(duì)任意x,y∈R均有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,f(1)="-" .
(1)判斷并證明f(x)在R上的單調(diào)性;
(2)求f(x)在[-3,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函數(shù),則(  ).     
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時(shí))的函數(shù);
(2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題









(1)判斷函數(shù)上的單調(diào)性;
(2)若,求不等式的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f (x)=ln(2+3x)-x2 ..
小題1:求f (x)在[0, 1]上的極值;
小題2:若對(duì)任意x∈[],不等式|a-lnx|-ln[ f ’(x)+3x]>0成立,求實(shí)數(shù)a的取值范圍;
小題3:若關(guān)于x的方程f (x)= -2x+b在[0, 1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)上是減函數(shù),求的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知實(shí)數(shù),且函數(shù)有最小值,則=__________。

查看答案和解析>>

同步練習(xí)冊(cè)答案