14.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{3x-y≥1}\\{y≥x+1}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最小值為2,則$\frac{2}{a}+\frac{3}$的最小值為$\frac{25}{2}$.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)可得$a+\frac{3}{2}b=1$,然后利用基本不等式求最值.

解答 解:由約束條件$\left\{\begin{array}{l}{x≥2}\\{3x-y≥1}\\{y≥x+1}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=2}\\{y=x+1}\end{array}\right.$,解得A(2,3),
化目標(biāo)函數(shù)z=ax+by(a>0,b>0)為$y=-\frac{a}x+\frac{z}$,
由圖可知,當(dāng)直線$y=-\frac{a}x+\frac{z}$過A時(shí),直線在y軸上的截距最小,z有最小值為2a+3b=2.
∴$a+\frac{3}{2}b=1$,
則$\frac{2}{a}+\frac{3}$=($\frac{2}{a}+\frac{3}$)($a+\frac{3}{2}b$)=2+$\frac{9}{2}+\frac{3b}{a}+\frac{3a}$$≥\frac{13}{2}+2\sqrt{\frac{3b}{a}•\frac{3a}}=\frac{25}{2}$.
當(dāng)且僅當(dāng)a=b時(shí)上式等號成立.
故答案為:$\frac{25}{2}$.

點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用基本不等式求最值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知中心在原點(diǎn)的橢圓C的一個(gè)焦點(diǎn)為F(0,1),離心率為$\frac{1}{2}$,則橢圓C的標(biāo)準(zhǔn)方程為$\frac{y^2}{4}+\frac{x^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知M={x∈N|$\frac{6}{6-x}$∈N},則集合M的子集的個(gè)數(shù)是( 。
A.8B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}是等差數(shù)列,公差d不為0,Sn是其前n項(xiàng)和,若a3,a4,a8成等比數(shù)列,則下列四個(gè)結(jié)論
①a1d<0;②dS4<0;③S8=-20S4;④等比數(shù)列a3,a4,a8的公比為4.其中正確的是①②④.(請把正確結(jié)論的序號全部填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)莖葉圖如圖所示,若眾數(shù)為c,則c=( 。
A.12B.14C.15D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個(gè)人打靶時(shí)連續(xù)射擊三次,與事件“至多有兩次中靶”互斥的事件是( 。
A.至少有兩次中靶B.三次都中靶C.只有一次中靶D.三次都不中靶

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)數(shù)列{an}滿足a1=0,且2an+1=1+anan+1,bn=$\frac{1}{{\sqrt{n}}}-\sqrt{\frac{{{a_{n+1}}}}{n}}$,記Sn=b1+b2+…+bn,則S100=( 。
A.$1-\frac{1}{{\sqrt{101}}}$B.$\frac{9}{10}$C.$\frac{99}{100}$D.$\frac{1}{10}-\frac{1}{{\sqrt{101}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知p:“?x0∈R,使得x02+mx0+2m-3<0”;q:命題“?x∈[1,2],x2-m≤0”,若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.滿足A⊆{0,1,2,3,4,5}的非空集合A的個(gè)數(shù)是31個(gè).

查看答案和解析>>

同步練習(xí)冊答案