分析 由題意可知,橢圓是焦點(diǎn)在y軸上的橢圓,再由已知得到c=1,結(jié)合離心率求出a,根據(jù)隱含條件求得b,則橢圓方程可求.
解答 解:由題意可知,橢圓的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1(a>b>0)$,
又橢圓C的一個焦點(diǎn)為F(0,1),離心率為$\frac{1}{2}$,
可得c=1,a=2,∴b2=a2-c2=4-1=3.
∴橢圓C的標(biāo)準(zhǔn)方程為$\frac{y^2}{4}+\frac{x^2}{3}=1$.
故答案為:$\frac{y^2}{4}+\frac{x^2}{3}=1$.
點(diǎn)評 本題考查橢圓的簡單性質(zhì),考查了橢圓標(biāo)準(zhǔn)方程的求法,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{6}$,$\frac{5}{3}$] | B. | (-∞,-$\frac{1}{6}$]∪[$\frac{5}{3}$,+∞) | C. | [-$\frac{1}{6}$,0)∁(0,$\frac{5}{3}$] | D. | (-$\frac{1}{6}$,$\frac{5}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{4}$ | B. | 4 | C. | $\frac{9}{4}$或4 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “若x2+y2=0,則x,y全為0”的否命題是真命題 | |
B. | 函數(shù)f(x)=ex+x-2的零點(diǎn)所在區(qū)間是(1,2) | |
C. | 命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1則x2-3x+2≠0” | |
D. | 對于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com