下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤)的幾組對(duì)應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出關(guān)于的線性回歸方程,那么表中的值為?( )

A.4 B.3.5 C.3 D.4.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若S9=45,則a5=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)幾何體的三視圖如圖所示,則該幾何體的側(cè)面積為( 。
A.B.C.2$\sqrt{2}$πD.$\sqrt{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a2=b2+c2-bc,bc=4,則△ABC的面積為( 。
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.全集U=R,A={x|-2≤x≤1},B={x|-1≤x≤3},則A∪B=[-2,3],B∪(∁UA)=(-∞,-2)∪[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,其中a1=1,且$\frac{{S}_{n}}{{a}_{n}}$=λan+1(n∈N*).
(Ⅰ)求常數(shù)λ的值,并寫出{an}的通項(xiàng)公式;
(Ⅱ)記bn=$\frac{{a}_{n}}{{3}^{n}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求最小的正整數(shù)k,使得對(duì)任意的n≥k,都有|Tn-$\frac{3}{4}$|<$\frac{1}{4n}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),若$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{2}$=$\frac{2}{{a}_{1}}$+$\frac{2}{{a}_{2}}$,$\frac{{a}_{3}}{4}$+$\frac{{a}_{4}}{4}$=$\frac{4}{{a}_{3}}$+$\frac{4}{{a}_{4}}$,則a1a5=( 。
A.24$\sqrt{2}$B.8C.8$\sqrt{2}$D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,底面ABCD直角梯形,AD∥BC,∠ADC=90°,AD=2BC=2,$CD=\sqrt{3}$,平面PAD⊥底面ABCD,若M為AD的中點(diǎn).
(Ⅰ)求證:BM⊥面PAD;
(Ⅱ)在線段PC上是否存在點(diǎn)E,使二面角E-BM-C等于30°,若存在,求$\frac{PE}{EC}$的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.等差數(shù)列{an}的公差為d,前n項(xiàng)和Sn,設(shè)n≥3m,m∈N+,判斷A=Sm,B=S2m-Sm,C=S3m-S2m三者是否也成等差數(shù)列?若成等差數(shù)列,求其公差.

查看答案和解析>>

同步練習(xí)冊(cè)答案