已知點,是直線上任意一點,以A、B為焦點的橢圓過點P.記橢圓離心率關(guān)于的函數(shù)為,那么下列結(jié)論正確的是 (   )

      A.一一對應(yīng)                B.函數(shù)無最小值,有最大值

   C.函數(shù)是增函數(shù)             D.函數(shù)有最小值,無最大值

 

【答案】

B

【解析】解:因為點、是直線上任意一點,所以點P在直線上運動時,那么PA+PB的最小值可以求解得到。那就是點A關(guān)于直線的對稱點(-2,1),與B點的連線,利用對稱性得到為,所以橢圓的長軸有最小值,焦距為2,則說明離心率只有最大值,無最小值。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點A (1,0),P是曲線
x=2cosθ
y=1+cos2θ
(θ∈R)
上任一點,設(shè)P到直線l:y=-
1
2
的距離為d,則|PA|+d的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,點P(-
2
,1)在橢圓上,線段PF2與y軸的交點M滿足
PM
+
F2M
=
0

(1)求橢圓C的方程.
(2)橢圓C上任一動點M(x0,y0)關(guān)于直線y=2x的對稱點為M1(x1,y1),求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)為曲線y=x+
1
x
上任一點,點A(0,4),則直線AP的斜率k的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心是坐標(biāo)原點O,焦點在x軸上,離心率為
2
2
,又橢圓上任一點到兩焦點的距離和為2
2
,過點M(0,-
1
3
)與x軸不垂直的直線l交橢圓于P、Q兩點.
(1)求橢圓的方程;
(2)在y軸上是否存在定點N,使以PQ為直徑的圓恒過這個點?若存在,求出N的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京宣武區(qū)高三二?荚嚁(shù)學(xué)試題 題型:解答題

(本小題共14分)
已知橢圓的焦點是,,點在橢圓上且滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線與橢圓的交點為.
(i)求使 的面積為的點的個數(shù);
(ii)設(shè)為橢圓上任一點,為坐標(biāo)原點,,求的值.

查看答案和解析>>

同步練習(xí)冊答案