【題目】某公司利用線上、實體店線下銷售產(chǎn)品,產(chǎn)品在上市天內(nèi)全部售完.據(jù)統(tǒng)計,線上日銷售量、線下日銷售量(單位:件)與上市時間 天的關(guān)系滿足: ,產(chǎn)品每件的銷售利潤為(單位:元)(日銷售量線上日銷售量線下日銷售量).

(1)設(shè)該公司產(chǎn)品的日銷售利潤為寫出的函數(shù)解析式;

(2)產(chǎn)品上市的哪幾天給該公司帶來的日銷售利潤不低于元?

【答案】(1)(2)第5天至第15天該公司日銷售利潤不低于.

【解析】試題分析:

(1)由題意分類討論,分別求得銷售量,然后與相應(yīng)的利潤相乘可得利潤函數(shù)的解析式為

(2)結(jié)合(1)中的利潤函數(shù)分類討論求解二次不等式可得第5天至第15天給該公司帶來的日銷售利潤不低于.

試題解析:

(1)由題意可得:

時,銷售量為,銷售利潤為:;

時,銷售量為,銷售利潤為:;

時,銷售量為,銷售利潤為:;

綜上可得:

(2)當時,由解得;

時,由,解得;

時,由,無解.

故第5天至第15天給該公司帶來的日銷售利潤不低于.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點, 求實數(shù)的取值范圍;

(Ⅱ) 證明: 當時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機變量X服從正態(tài)分布Nμ,σ2),且PμXμ)=0.954 4,PμσXμσ)=0.682 6.μ4,σ1,則P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)fx)的最小正周期及單調(diào)遞增區(qū)間;

(2)求fx)在區(qū)間上的最大值和最小值及相應(yīng)的x值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合為下述條件的函數(shù)的集合:①定義域為;②對任意實數(shù),都有

1)判斷函數(shù)是否為中元素,并說明理由;

2)若函數(shù)是奇函數(shù),證明:

3)設(shè)都是中的元素,求證:也是中的元素,并舉例說明,不一定是中的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知圓過坐標原點且圓心在曲線 上.

(1)若圓分別與軸、軸交于點(不同于原點),求證:的面積為定值;

(2)設(shè)直線與圓交于不同的兩點,且,求圓的方程;

(3)點在直線上,過點引圓(題(2))的兩條切線,切點為,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,側(cè)面底面ABCD,底面ABCD為直角梯形,,,,E,F分別為AD,PC的中點.

求證:平面BEF;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

)寫出曲線的直角坐標方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案