已知,記,
().則++…+=                
0

試題分析:因為,,
所以,
是周期為4的周期函數(shù),且2011=4×502+3,
所以,++…+=502×(+0-+0)+(+0-)=0。
點評:中檔題,對于此類問題,往往從研究函數(shù)的性質(規(guī)律)入手,化繁為簡,化難為易。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)F(x )=x2+aln(x+1)
(I)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調遞增函數(shù),求實數(shù)a的取值范圍;
(II)若函數(shù)y=f(x)有兩個極值點x1,x2,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)=x+ax2+blnx,曲線y=過P(1,0),且在P點處的切斜線率為2.
(1)求a,b的值;
(2)證明:≤2x-2.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,若,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是定義在上的奇函數(shù),,則不等式的解集是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,一矩形鐵皮的長為8cm,寬為5cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求的最小值;
(2)若直線對任意的都不是曲線的切線,求的取值范圍;
(3)設,求的最大值的解析式

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知, ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求的單調區(qū)間;
(2)當時,判斷的大小,并說明理由;
(3)求證:當時,關于的方程:在區(qū)間上總有兩個不同的解.

查看答案和解析>>

同步練習冊答案