【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線經過點,其傾斜角為,在以原點為極點,軸非負半軸為極軸的極坐標系中(取相同的長度單位),曲線的極坐標方程為
(Ⅰ)若直線與曲線有公共點,求的取值范圍;
(Ⅱ)設為曲線上任意一點,求的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】
試題分析:(Ⅰ)由直線l經過點P(﹣1,0),且傾斜角為α,可得直線l的參數(shù)方程,利用互化公式可得C的直角坐標方程.由直線l與曲線C有公共點,可得,解出即可得出的取值范圍;
(Ⅱ)設M(x,y)為曲線C上任意一點,利用參數(shù)方程為(θ為參數(shù)),結合三角函數(shù)知識求的取值范圍.
試題解析:
(Ⅰ)曲線的極坐標方程為,
曲線的直角坐標方程為,
直線經過點,其傾斜角為,直線的參數(shù)方程為 (為參數(shù)),
將,代入整理得,
直線與曲線有公共點,即,
的取值范圍是
(Ⅱ)曲線的直角坐標方程為可化為,
其參數(shù)方程為 (為參數(shù)),
為曲線上任意一點,
,其中,
的取值范圍是
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體ABCD﹣A1B1C1D1為正方體,則下面結論正確的是( 。
A.A1B∥B1C
B.平面CB1D1⊥平面A1B1C1D1
C.平面CB1D1∥平面A1BD
D.異面直線AD與CB1所成的角為30°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
如圖,在平面直角坐標系xOy中,平行于x軸且過點A(3,2)的入射光線 l1
被直線l:y=x反射.反射光線l2交y軸于B點,圓C過點A且與l1, l2 都相切.
(1)求l2所在直線的方程和圓C的方程;
(2)設分別是直線l和圓C上的動點,求的最小值及此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高三理科班共有名同學參加某次考試,從中隨機挑出名同學,他們的數(shù)學成績與物理成績如下表:
數(shù)學成績 | |||||
物理成績 |
(1)數(shù)據(jù)表明與之間有較強的線性關系,求關于的線性回歸方程;
(2)本次考試中,規(guī)定數(shù)學成績達到分為優(yōu)秀,物理成績達到分為優(yōu)秀.若該班數(shù)學優(yōu)秀率與物理優(yōu)秀率分別為和,且除去抽走的名同學外,剩下的同學中數(shù)學優(yōu)秀但物理不優(yōu)秀的同學共有人,請寫出列聯(lián)表,判斷能否在犯錯誤的概率不超過的前提下認為數(shù)學優(yōu)秀與物理優(yōu)秀有關?
參考數(shù)據(jù):,;,;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,曲線由曲線和曲線組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.
(Ⅰ)若,求曲線的方程;
(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸進線上;
(Ⅲ)對于(Ⅰ)中的曲線,若直線過點交曲線于點,求與面積之和的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 為了凈化廣州水系,擬在小清河建一座平面圖(如圖所示)為矩形且面積為200 m2的三級污水處理池,由于地形限制,長、寬都不能超過16 m,如果池外壁建造單價為400元/m2,中間兩條隔墻建造單價為248元/m2,池底建造單價為80元/m2(池壁厚度忽略不計,且池無蓋).
(1)寫出總造價y(元)與x的函數(shù)關系式,并指出定義域;
(2)求污水處理池的長和寬各為多少時,污水處理池的總造價最低,并求最低造價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家舉行大型的促銷活動,經測算,當某產品促銷費用為x(萬元)時,銷售量t(萬件)滿足(其中,).現(xiàn)假定產量與銷售量相等,已知生產該產品t萬件還需投入成本萬元(不含促銷費用),產品的銷售價格定為元/件.
(1)將該產品的利潤y(萬元)表示為促銷費用x(萬元)的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)若在處取得極值,求過點且與在處的切線平行的直線方程;
(II)當函數(shù)有兩個極值點,且時,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結論
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角是60°.
其中正確結論的序號是________
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com