【題目】如圖,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分別為線段AD,PC的中點(diǎn).
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:
(1)證明四邊形是平行四邊形,可得是的中點(diǎn),利用為線段的中點(diǎn),可得,從而可證平面;
(2)證明,即可證明平面.
試題解析:
(1)設(shè)AC∩BE=O,連接OF,EC.
由于E為AD的中點(diǎn),
AB=BC=AD,AD∥BC,
∴AE∥BC,AE=AB=BC,
因此四邊形ABCE為菱形,
∴O為AC的中點(diǎn).
又F為PC的中點(diǎn),因此在△PAC中,可得AP∥OF.
又OF平面BEF,AP平面BEF.
∴AP∥平面BEF.
(2)由題意知ED∥BC,ED=BC.
∴四邊形BCDE為平行四邊形,
因此BE∥CD.
又AP⊥平面PCD,
∴AP⊥CD,
因此AP⊥BE.
∵四邊形ABCE為菱形,
∴BE⊥AC.
又AP∩AC=A,AP,AC平面PAC,
∴BE⊥平面PAC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.記f(x)≤1的解集為M,g(x)≤4的解集為N.
(1)求M;
(2)當(dāng)x∈M∩N時(shí),證明:x2f(x)+x[f(x)]2≤ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(1﹣a|x|)+1(a>0),若f(x+a)≤f(x)對(duì)任意的x∈R恒成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級(jí)3個(gè)班有10名學(xué)生在全國(guó)英語能力大賽中獲獎(jiǎng),學(xué)生來源人數(shù)如表:
班別 | 高一(1)班 | 高一(2)班 | 高一(3)班 |
人數(shù) | 3 | 6 | 1 |
若要求從10位同學(xué)中選出兩位同學(xué)介紹學(xué)習(xí)經(jīng)驗(yàn),設(shè)其中來自高一(1)班的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù),函數(shù).
(1) 若,求的單調(diào)遞減區(qū)間;
(2) 若為奇函數(shù),且關(guān)于的不等式對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍;
(3) 當(dāng)時(shí),若方程有三個(gè)不相等的實(shí)數(shù)根、、,且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,點(diǎn)D是AB的中點(diǎn)
(1)求證:AC 1//平面CDB1;(2)求證:AC⊥面BB1C1C ;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品廠為了檢查甲、乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在[495,510)內(nèi)的產(chǎn)品為合格品,否則為不合格品.統(tǒng)計(jì)結(jié)果如下:
甲流水線樣本的頻數(shù)分布表
產(chǎn)品重量(克) | 頻數(shù) |
[490,495) | 6 |
[495,500) | 8 |
[500,505) | 14 |
[505,510) | 8 |
[510,515] | 4 |
乙流水線樣本的頻率分布直方圖
(1)求甲流水線樣本合格的頻率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,并回答有多大的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動(dòng)包裝流水線的選擇有關(guān).
分類 | 甲流水線 | 乙流水線 | 總計(jì) |
合格品 | |||
不合格品 | |||
總計(jì) |
附:K2=.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在多面體ABCDE中,△BCD是邊長(zhǎng)為2的正三角形,AE∥DB,AE⊥DE,2AE=BD,DE=1,面ABDE⊥面BCD,F(xiàn)是CE的中點(diǎn).
(Ⅰ)求證:BF⊥CD;
(Ⅱ)求二面角C﹣BF﹣D的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com