某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn).根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程
y
=0.67x+54.9,表中有一個(gè)數(shù)據(jù)模糊不清,請(qǐng)你推斷出該數(shù)據(jù)的值為(  )
零件數(shù)x個(gè) 10 20 30 40 50
加工時(shí)間y(min) 62 75 81 89
A、75B、62C、68D、81
考點(diǎn):線性回歸方程
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)表中所給的數(shù)據(jù),做出橫標(biāo)和縱標(biāo)的平均數(shù),得到樣本中心點(diǎn),根據(jù)由最小二乘法求得回歸方程
y
=0.67x+54.9,代入樣本中心點(diǎn)求出該數(shù)據(jù)的值.
解答: 解:設(shè)表中有一個(gè)模糊看不清數(shù)據(jù)為m.
由表中數(shù)據(jù)得:
.
x
=30,
.
y
=
m+307
5
,
由于由最小二乘法求得回歸方程
y
=0.67x+54.9,
.
x
=30,
.
y
=
m+307
5
,代入回歸直線方程,得m=68.
故選:C.
點(diǎn)評(píng):本題考查數(shù)據(jù)的回歸直線方程,利用回歸直線方程恒過(guò)樣本中心點(diǎn)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x、y滿足(x+y-1)(x-y+1)≥0且x∈[-1,1],則x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體三視圖如下圖所示,則該幾何體的體積是(  )
A、1+
π
12
B、1+
π
6
C、1+
π
3
D、1+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線y2=4x的準(zhǔn)線與雙曲線
x
2
 
a
2
 
-
y
2
 
b
2
 
=1(a>b>0)
的漸近線的一個(gè)交點(diǎn)的縱坐標(biāo)為2,則雙曲線的離心率為( 。
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,若P為其上一點(diǎn),且|PF1|=2|PF2|,∠F1PF2=
π
3
,則雙曲線的離心率為(  )
A、
2
B、2
C、
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論錯(cuò)誤的是( 。
A、若點(diǎn)(2,3)在函數(shù)y=ax(a>0,且a≠1)的圖象上,則點(diǎn)(3,2)必在函數(shù)y=logax的圖象上
B、函數(shù)y=ax(a>0,且a≠1)的圖象比過(guò)點(diǎn)(0,1),就是說(shuō)函數(shù)y=logax的圖象必過(guò)點(diǎn)(1,0)
C、若點(diǎn)(m,n)既在函數(shù)y=ax(a>0,且a≠1)的圖象上,又在函數(shù)y=logax的圖象上,則m=n
D、函數(shù)y=logax的圖象(a>0,且a≠1)的圖象與y軸不可能有交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-1,1),若點(diǎn)M(x,y)為平面區(qū)域
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
上的一個(gè)動(dòng)點(diǎn),則|AM|的最小值是( 。
A、
3
5
5
B、
2
C、
5
D、
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且經(jīng)過(guò)點(diǎn)P(1,
2
2
).直線l1:y=k1x+m1與橢圓M交于A,C兩點(diǎn),直線l2:y=k2x+m2與橢圓M交于B,D兩點(diǎn),四邊形ABCD是平行四邊形.
(1)求橢圓M的方程;
(2)求證:平行四邊形ABCD的對(duì)角線AC和BD相交于原點(diǎn)O;
(3)若平行四邊形ABCD為菱形,求菱形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知首項(xiàng)為
3
2
的等比數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且-2S2,S3,4S4成等差數(shù)列,則數(shù)列{an}的通項(xiàng)公式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案