【題目】某高中在校學生2000為了響應“陽光體育運動”號召,學校舉行了跑步和登山比賽活動每人都參加而且只參與了其中一項比賽,各年級參與比賽人數(shù)情況如表:

高一年級

高二年級

高三年級

跑步

a

b

c

登山

x

y

z

其中ab35,全校參與登山的人數(shù)占總?cè)藬?shù)的,為了了解學生對本次活動的滿意程度,現(xiàn)用分層抽樣方式從中抽取一個100個人的樣本進行調(diào)查,則高二年級參與跑步的學生中應抽取  

A. 6B. 12C. 18D. 24

【答案】B

【解析】

先求得參與跑步的總?cè)藬?shù),再乘以抽樣比例,得出樣本中參與跑步的人數(shù),再根據(jù)高二的比例求得結(jié)果.

根據(jù)題意可知樣本中參與跑步的人數(shù)為人,所以高二年級參與跑步的學生中應抽取的人數(shù)為人.

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫(yī)療機構(gòu)免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如下圖表:

1)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取8人進一步了解他們的生活狀況,則兩個群體中各應抽取多少人?

2)估算該市80歲及以上長者占全市戶籍人口的百分比;

3)據(jù)統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā)放生活補貼,標準如下:

①80歲及以上長者每人每月發(fā)放生活補貼200元;

②80歲以下老人每人每月發(fā)放生活補貼120元;

③不能自理的老人每人每月額外發(fā)放生活補貼100元.

利用樣本估計總體,試估計政府執(zhí)行此計劃的年度預算.(單位:億元,結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于向量的描述正確的是( )

A.若向量,都是單位向量,則

B.若向量,都是單位向量,則

C.任何非零向量都有唯一的與之共線的單位向量

D.平面內(nèi)起點相同的所有單位向量的終點共圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點的交點為,且拋物線在點處的切線與軸交于點,拋物線在點處的切線與軸交于點,與軸交于點.

(1)若直線與拋物線交于點 ,且,求;

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線經(jīng)過點

(1)若原點到直線的距離為2,求直線的方程;

(2)若直線被兩條相交直線所截得的線段恰被點平分,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個不共線的向量滿足, .

1)若垂直,求的值;

2)當時,若存在兩個不同的使得成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù) .若曲線在點處的切線方程為為自然對數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

(1)若函數(shù)上單調(diào)遞增,求的取值范圍;

(2)當時,設(shè)函數(shù)的最小值為,求證:

(3)求證:對任意的正整數(shù),都有

查看答案和解析>>

同步練習冊答案